
Prove the following identity \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\], geometrically.
Answer
603k+ views
Hint: To solve this problem use Pythagoras theorem i.e. the square of the hypotenuse of the right angled triangle is equal to the area to the sum of the square on the other two sides.
Let us consider a triangle ABC, where it is right angled at \[{{90}^{\circ }}\] and angle C is taken as \[\theta \].
According to angle C \[\theta \], AB is the opposite side, BC is the adjacent side and AC is the hypotenuse.
We know the Pythagoras theorem.
i.e. the square of the hypotenuse of the right angled triangle is equal to the area to the sum of the square on the other two sides.
i.e. \[A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}-(1)\]
Now, divide both RHS and LHS with \[A{{C}^{2}}\]
\[\begin{align}
& \Rightarrow \dfrac{A{{B}^{2}}+B{{C}^{2}}}{A{{C}^{2}}}=\dfrac{A{{C}^{2}}}{A{{C}^{2}}} \\
& \therefore \dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1\Rightarrow {{\left( \dfrac{AB}{AC} \right)}^{2}}+{{\left( \dfrac{BC}{AC} \right)}^{2}}=1-(2) \\
\end{align}\]
where, \[\dfrac{AB}{AC}=\dfrac{opposite\ side}{hypotenuse}=\sin \theta \]
\[\begin{align}
& \dfrac{BC}{AC}=\dfrac{adjacent\ side}{hypotenuse}=\cos \theta \\
& \therefore {{\left( \dfrac{AB}{AC} \right)}^{2}}+{{\left( \dfrac{BC}{AC} \right)}^{2}}=1\Rightarrow {{\left( \sin \theta \right)}^{2}}+{{\left( \cos \theta \right)}^{2}}=1 \\
& \Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
\end{align}\]
Note: This is another method to prove \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
From a right angle triangle, \[\cos \theta =\dfrac{adjacent\ side}{hypotenuse}=\dfrac{h}{r}\]
\[\sin \theta =\dfrac{opposite\ side}{hypotenuse}=\dfrac{v}{r}\]
From Pythagoras theorem, \[{{r}^{2}}={{v}^{2}}+{{h}^{2}}\]
Here, \[\cos \theta =\dfrac{h}{r}\Rightarrow h=r\cos \theta \]
\[\begin{align}
& \sin \theta =\dfrac{v}{r}\Rightarrow v=r\sin \theta \\
& \therefore {{r}^{2}}={{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}}\Rightarrow {{r}^{2}}={{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta \\
& \therefore {{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta ={{r}^{2}} \\
& {{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)={{r}^{2}} \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\
\end{align}\]
Let us consider a triangle ABC, where it is right angled at \[{{90}^{\circ }}\] and angle C is taken as \[\theta \].
According to angle C \[\theta \], AB is the opposite side, BC is the adjacent side and AC is the hypotenuse.
We know the Pythagoras theorem.
i.e. the square of the hypotenuse of the right angled triangle is equal to the area to the sum of the square on the other two sides.
i.e. \[A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}-(1)\]
Now, divide both RHS and LHS with \[A{{C}^{2}}\]
\[\begin{align}
& \Rightarrow \dfrac{A{{B}^{2}}+B{{C}^{2}}}{A{{C}^{2}}}=\dfrac{A{{C}^{2}}}{A{{C}^{2}}} \\
& \therefore \dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1\Rightarrow {{\left( \dfrac{AB}{AC} \right)}^{2}}+{{\left( \dfrac{BC}{AC} \right)}^{2}}=1-(2) \\
\end{align}\]
where, \[\dfrac{AB}{AC}=\dfrac{opposite\ side}{hypotenuse}=\sin \theta \]
\[\begin{align}
& \dfrac{BC}{AC}=\dfrac{adjacent\ side}{hypotenuse}=\cos \theta \\
& \therefore {{\left( \dfrac{AB}{AC} \right)}^{2}}+{{\left( \dfrac{BC}{AC} \right)}^{2}}=1\Rightarrow {{\left( \sin \theta \right)}^{2}}+{{\left( \cos \theta \right)}^{2}}=1 \\
& \Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
\end{align}\]
Note: This is another method to prove \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
From a right angle triangle, \[\cos \theta =\dfrac{adjacent\ side}{hypotenuse}=\dfrac{h}{r}\]
\[\sin \theta =\dfrac{opposite\ side}{hypotenuse}=\dfrac{v}{r}\]
From Pythagoras theorem, \[{{r}^{2}}={{v}^{2}}+{{h}^{2}}\]
Here, \[\cos \theta =\dfrac{h}{r}\Rightarrow h=r\cos \theta \]
\[\begin{align}
& \sin \theta =\dfrac{v}{r}\Rightarrow v=r\sin \theta \\
& \therefore {{r}^{2}}={{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}}\Rightarrow {{r}^{2}}={{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta \\
& \therefore {{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta ={{r}^{2}} \\
& {{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)={{r}^{2}} \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\
\end{align}\]
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

