Answer

Verified

453k+ views

Hint: To solve this problem use Pythagoras theorem i.e. the square of the hypotenuse of the right angled triangle is equal to the area to the sum of the square on the other two sides.

Let us consider a triangle ABC, where it is right angled at \[{{90}^{\circ }}\] and angle C is taken as \[\theta \].

According to angle C \[\theta \], AB is the opposite side, BC is the adjacent side and AC is the hypotenuse.

We know the Pythagoras theorem.

i.e. the square of the hypotenuse of the right angled triangle is equal to the area to the sum of the square on the other two sides.

i.e. \[A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}-(1)\]

Now, divide both RHS and LHS with \[A{{C}^{2}}\]

\[\begin{align}

& \Rightarrow \dfrac{A{{B}^{2}}+B{{C}^{2}}}{A{{C}^{2}}}=\dfrac{A{{C}^{2}}}{A{{C}^{2}}} \\

& \therefore \dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1\Rightarrow {{\left( \dfrac{AB}{AC} \right)}^{2}}+{{\left( \dfrac{BC}{AC} \right)}^{2}}=1-(2) \\

\end{align}\]

where, \[\dfrac{AB}{AC}=\dfrac{opposite\ side}{hypotenuse}=\sin \theta \]

\[\begin{align}

& \dfrac{BC}{AC}=\dfrac{adjacent\ side}{hypotenuse}=\cos \theta \\

& \therefore {{\left( \dfrac{AB}{AC} \right)}^{2}}+{{\left( \dfrac{BC}{AC} \right)}^{2}}=1\Rightarrow {{\left( \sin \theta \right)}^{2}}+{{\left( \cos \theta \right)}^{2}}=1 \\

& \Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\

\end{align}\]

Note: This is another method to prove \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]

From a right angle triangle, \[\cos \theta =\dfrac{adjacent\ side}{hypotenuse}=\dfrac{h}{r}\]

\[\sin \theta =\dfrac{opposite\ side}{hypotenuse}=\dfrac{v}{r}\]

From Pythagoras theorem, \[{{r}^{2}}={{v}^{2}}+{{h}^{2}}\]

Here, \[\cos \theta =\dfrac{h}{r}\Rightarrow h=r\cos \theta \]

\[\begin{align}

& \sin \theta =\dfrac{v}{r}\Rightarrow v=r\sin \theta \\

& \therefore {{r}^{2}}={{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}}\Rightarrow {{r}^{2}}={{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta \\

& \therefore {{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta ={{r}^{2}} \\

& {{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)={{r}^{2}} \\

& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\

\end{align}\]

Let us consider a triangle ABC, where it is right angled at \[{{90}^{\circ }}\] and angle C is taken as \[\theta \].

According to angle C \[\theta \], AB is the opposite side, BC is the adjacent side and AC is the hypotenuse.

We know the Pythagoras theorem.

i.e. the square of the hypotenuse of the right angled triangle is equal to the area to the sum of the square on the other two sides.

i.e. \[A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}-(1)\]

Now, divide both RHS and LHS with \[A{{C}^{2}}\]

\[\begin{align}

& \Rightarrow \dfrac{A{{B}^{2}}+B{{C}^{2}}}{A{{C}^{2}}}=\dfrac{A{{C}^{2}}}{A{{C}^{2}}} \\

& \therefore \dfrac{A{{B}^{2}}}{A{{C}^{2}}}+\dfrac{B{{C}^{2}}}{A{{C}^{2}}}=1\Rightarrow {{\left( \dfrac{AB}{AC} \right)}^{2}}+{{\left( \dfrac{BC}{AC} \right)}^{2}}=1-(2) \\

\end{align}\]

where, \[\dfrac{AB}{AC}=\dfrac{opposite\ side}{hypotenuse}=\sin \theta \]

\[\begin{align}

& \dfrac{BC}{AC}=\dfrac{adjacent\ side}{hypotenuse}=\cos \theta \\

& \therefore {{\left( \dfrac{AB}{AC} \right)}^{2}}+{{\left( \dfrac{BC}{AC} \right)}^{2}}=1\Rightarrow {{\left( \sin \theta \right)}^{2}}+{{\left( \cos \theta \right)}^{2}}=1 \\

& \Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\

\end{align}\]

Note: This is another method to prove \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]

From a right angle triangle, \[\cos \theta =\dfrac{adjacent\ side}{hypotenuse}=\dfrac{h}{r}\]

\[\sin \theta =\dfrac{opposite\ side}{hypotenuse}=\dfrac{v}{r}\]

From Pythagoras theorem, \[{{r}^{2}}={{v}^{2}}+{{h}^{2}}\]

Here, \[\cos \theta =\dfrac{h}{r}\Rightarrow h=r\cos \theta \]

\[\begin{align}

& \sin \theta =\dfrac{v}{r}\Rightarrow v=r\sin \theta \\

& \therefore {{r}^{2}}={{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}}\Rightarrow {{r}^{2}}={{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta \\

& \therefore {{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta ={{r}^{2}} \\

& {{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)={{r}^{2}} \\

& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\

\end{align}\]

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Establish a relation between electric current and drift class 12 physics CBSE

Guru Purnima speech in English in 100 words class 7 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Copper is not used as potentiometer wire because class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE