Answer
Verified
490.8k+ views
Hint: Substitute the formula for hyperbolic sine and cosine, that is, \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\] in the left-hand side of the equation and simplify to complete the proof.
Complete step by step answer:
Let us start proving by assigning the left-hand side of the equation to the LHS.
\[LHS = {\cosh ^2}x{\cos ^2}x - {\sinh ^2}x{\sin ^2}x.........(1)\]
Hyperbolic functions are similar to trigonometric functions but they are defined in terms of the exponential function. Like, sin x and cos x is defined on a circle, sinh x and cosh x are defined on a hyperbola, thus giving its name. The point (cos t, sin t) lies on the circle.
Similarly, the point (cosh t, sinh t) lies on a hyperbola.
We know the formula for hyperbolic cosine and sine in terms of exponential function.
\[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}..........(2)\]
\[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}..........(3)\]
Substituting equation (2) and equation (3) in equation (1), we get:
\[LHS = {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2}{\cos ^2}x - {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2}{\sin ^2}x\]
Evaluating the squares, we get:
\[LHS = \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right){\cos ^2}x - \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right){\sin ^2}x\]
Grouping together the common exponential terms, we get:
\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{2}{4}({\cos ^2}x + {\sin ^2}x)\]
We know that \[{\cos ^2}x + {\sin ^2}x = 1\], hence, we have:
\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{1}{2}\]
We know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\], hence, we have:
\[LHS = \dfrac{{{e^{2x}}}}{4}(\cos 2x) + \dfrac{{{e^{ - 2x}}}}{4}(\cos 2x) + \dfrac{1}{2}\]
Now, taking cos2x as a common term, we have:
\[LHS = \cos 2x\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) + \dfrac{1}{2}\]
Now using equation (2), the term inside the bracket can be expressed in terms of cosh2x.
Hence, we get:
\[LHS = \cos 2x\left( {\dfrac{{\cosh 2x}}{2}} \right) + \dfrac{1}{2}\]
Taking the factor of half as a common term, we have:
\[LHS = \dfrac{1}{2}\left( {1 + \cos 2x\cosh 2x} \right)\]
The right hand side of the equation is nothing but the right hand side of the proof, hence, we get:
\[LHS = RHS\]
Hence, we proved.
Note: You can also use the relation between the hyperbolic sine and cosine, \[{\cosh ^2}x - {\sinh ^2}x = 1\] and \[\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\] to complete the proof.
Complete step by step answer:
Let us start proving by assigning the left-hand side of the equation to the LHS.
\[LHS = {\cosh ^2}x{\cos ^2}x - {\sinh ^2}x{\sin ^2}x.........(1)\]
Hyperbolic functions are similar to trigonometric functions but they are defined in terms of the exponential function. Like, sin x and cos x is defined on a circle, sinh x and cosh x are defined on a hyperbola, thus giving its name. The point (cos t, sin t) lies on the circle.
Similarly, the point (cosh t, sinh t) lies on a hyperbola.
We know the formula for hyperbolic cosine and sine in terms of exponential function.
\[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}..........(2)\]
\[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}..........(3)\]
Substituting equation (2) and equation (3) in equation (1), we get:
\[LHS = {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2}{\cos ^2}x - {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2}{\sin ^2}x\]
Evaluating the squares, we get:
\[LHS = \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right){\cos ^2}x - \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right){\sin ^2}x\]
Grouping together the common exponential terms, we get:
\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{2}{4}({\cos ^2}x + {\sin ^2}x)\]
We know that \[{\cos ^2}x + {\sin ^2}x = 1\], hence, we have:
\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{1}{2}\]
We know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\], hence, we have:
\[LHS = \dfrac{{{e^{2x}}}}{4}(\cos 2x) + \dfrac{{{e^{ - 2x}}}}{4}(\cos 2x) + \dfrac{1}{2}\]
Now, taking cos2x as a common term, we have:
\[LHS = \cos 2x\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) + \dfrac{1}{2}\]
Now using equation (2), the term inside the bracket can be expressed in terms of cosh2x.
Hence, we get:
\[LHS = \cos 2x\left( {\dfrac{{\cosh 2x}}{2}} \right) + \dfrac{1}{2}\]
Taking the factor of half as a common term, we have:
\[LHS = \dfrac{1}{2}\left( {1 + \cos 2x\cosh 2x} \right)\]
The right hand side of the equation is nothing but the right hand side of the proof, hence, we get:
\[LHS = RHS\]
Hence, we proved.
Note: You can also use the relation between the hyperbolic sine and cosine, \[{\cosh ^2}x - {\sinh ^2}x = 1\] and \[\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\] to complete the proof.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
What is Commercial Farming ? What are its types ? Explain them with Examples
Why is monsoon considered a unifying bond class 10 social science CBSE
a Why did Mendel choose pea plants for his experiments class 10 biology CBSE