Answer

Verified

448.8k+ views

Hint: Substitute the formula for hyperbolic sine and cosine, that is, \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\] in the left-hand side of the equation and simplify to complete the proof.

Complete step by step answer:

Let us start proving by assigning the left-hand side of the equation to the LHS.

\[LHS = {\cosh ^2}x{\cos ^2}x - {\sinh ^2}x{\sin ^2}x.........(1)\]

Hyperbolic functions are similar to trigonometric functions but they are defined in terms of the exponential function. Like, sin x and cos x is defined on a circle, sinh x and cosh x are defined on a hyperbola, thus giving its name. The point (cos t, sin t) lies on the circle.

Similarly, the point (cosh t, sinh t) lies on a hyperbola.

We know the formula for hyperbolic cosine and sine in terms of exponential function.

\[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}..........(2)\]

\[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}..........(3)\]

Substituting equation (2) and equation (3) in equation (1), we get:

\[LHS = {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2}{\cos ^2}x - {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2}{\sin ^2}x\]

Evaluating the squares, we get:

\[LHS = \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right){\cos ^2}x - \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right){\sin ^2}x\]

Grouping together the common exponential terms, we get:

\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{2}{4}({\cos ^2}x + {\sin ^2}x)\]

We know that \[{\cos ^2}x + {\sin ^2}x = 1\], hence, we have:

\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{1}{2}\]

We know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\], hence, we have:

\[LHS = \dfrac{{{e^{2x}}}}{4}(\cos 2x) + \dfrac{{{e^{ - 2x}}}}{4}(\cos 2x) + \dfrac{1}{2}\]

Now, taking cos2x as a common term, we have:

\[LHS = \cos 2x\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) + \dfrac{1}{2}\]

Now using equation (2), the term inside the bracket can be expressed in terms of cosh2x.

Hence, we get:

\[LHS = \cos 2x\left( {\dfrac{{\cosh 2x}}{2}} \right) + \dfrac{1}{2}\]

Taking the factor of half as a common term, we have:

\[LHS = \dfrac{1}{2}\left( {1 + \cos 2x\cosh 2x} \right)\]

The right hand side of the equation is nothing but the right hand side of the proof, hence, we get:

\[LHS = RHS\]

Hence, we proved.

Note: You can also use the relation between the hyperbolic sine and cosine, \[{\cosh ^2}x - {\sinh ^2}x = 1\] and \[\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\] to complete the proof.

Complete step by step answer:

Let us start proving by assigning the left-hand side of the equation to the LHS.

\[LHS = {\cosh ^2}x{\cos ^2}x - {\sinh ^2}x{\sin ^2}x.........(1)\]

Hyperbolic functions are similar to trigonometric functions but they are defined in terms of the exponential function. Like, sin x and cos x is defined on a circle, sinh x and cosh x are defined on a hyperbola, thus giving its name. The point (cos t, sin t) lies on the circle.

Similarly, the point (cosh t, sinh t) lies on a hyperbola.

We know the formula for hyperbolic cosine and sine in terms of exponential function.

\[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}..........(2)\]

\[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}..........(3)\]

Substituting equation (2) and equation (3) in equation (1), we get:

\[LHS = {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2}{\cos ^2}x - {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2}{\sin ^2}x\]

Evaluating the squares, we get:

\[LHS = \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right){\cos ^2}x - \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right){\sin ^2}x\]

Grouping together the common exponential terms, we get:

\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{2}{4}({\cos ^2}x + {\sin ^2}x)\]

We know that \[{\cos ^2}x + {\sin ^2}x = 1\], hence, we have:

\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{1}{2}\]

We know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\], hence, we have:

\[LHS = \dfrac{{{e^{2x}}}}{4}(\cos 2x) + \dfrac{{{e^{ - 2x}}}}{4}(\cos 2x) + \dfrac{1}{2}\]

Now, taking cos2x as a common term, we have:

\[LHS = \cos 2x\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) + \dfrac{1}{2}\]

Now using equation (2), the term inside the bracket can be expressed in terms of cosh2x.

Hence, we get:

\[LHS = \cos 2x\left( {\dfrac{{\cosh 2x}}{2}} \right) + \dfrac{1}{2}\]

Taking the factor of half as a common term, we have:

\[LHS = \dfrac{1}{2}\left( {1 + \cos 2x\cosh 2x} \right)\]

The right hand side of the equation is nothing but the right hand side of the proof, hence, we get:

\[LHS = RHS\]

Hence, we proved.

Note: You can also use the relation between the hyperbolic sine and cosine, \[{\cosh ^2}x - {\sinh ^2}x = 1\] and \[\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\] to complete the proof.

Recently Updated Pages

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Let x1x2xn be in an AP of x1 + x4 + x9 + x11 + x20-class-11-maths-CBSE

Let x1x2x3 and x4 be four nonzero real numbers satisfying class 11 maths CBSE

Trending doubts

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

List out three methods of soil conservation

Why is there a time difference of about 5 hours between class 10 social science CBSE