Prove the following identity:
\[{\cosh ^2}x{\cos ^2}x - {\sinh ^2}x{\sin ^2}x = \dfrac{1}{2}(1 + \cosh 2x\cos 2x)\]
Last updated date: 17th Mar 2023
•
Total views: 303k
•
Views today: 5.83k
Answer
303k+ views
Hint: Substitute the formula for hyperbolic sine and cosine, that is, \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\] in the left-hand side of the equation and simplify to complete the proof.
Complete step by step answer:
Let us start proving by assigning the left-hand side of the equation to the LHS.
\[LHS = {\cosh ^2}x{\cos ^2}x - {\sinh ^2}x{\sin ^2}x.........(1)\]
Hyperbolic functions are similar to trigonometric functions but they are defined in terms of the exponential function. Like, sin x and cos x is defined on a circle, sinh x and cosh x are defined on a hyperbola, thus giving its name. The point (cos t, sin t) lies on the circle.
Similarly, the point (cosh t, sinh t) lies on a hyperbola.
We know the formula for hyperbolic cosine and sine in terms of exponential function.
\[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}..........(2)\]
\[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}..........(3)\]
Substituting equation (2) and equation (3) in equation (1), we get:
\[LHS = {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2}{\cos ^2}x - {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2}{\sin ^2}x\]
Evaluating the squares, we get:
\[LHS = \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right){\cos ^2}x - \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right){\sin ^2}x\]
Grouping together the common exponential terms, we get:
\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{2}{4}({\cos ^2}x + {\sin ^2}x)\]
We know that \[{\cos ^2}x + {\sin ^2}x = 1\], hence, we have:
\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{1}{2}\]
We know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\], hence, we have:
\[LHS = \dfrac{{{e^{2x}}}}{4}(\cos 2x) + \dfrac{{{e^{ - 2x}}}}{4}(\cos 2x) + \dfrac{1}{2}\]
Now, taking cos2x as a common term, we have:
\[LHS = \cos 2x\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) + \dfrac{1}{2}\]
Now using equation (2), the term inside the bracket can be expressed in terms of cosh2x.
Hence, we get:
\[LHS = \cos 2x\left( {\dfrac{{\cosh 2x}}{2}} \right) + \dfrac{1}{2}\]
Taking the factor of half as a common term, we have:
\[LHS = \dfrac{1}{2}\left( {1 + \cos 2x\cosh 2x} \right)\]
The right hand side of the equation is nothing but the right hand side of the proof, hence, we get:
\[LHS = RHS\]
Hence, we proved.
Note: You can also use the relation between the hyperbolic sine and cosine, \[{\cosh ^2}x - {\sinh ^2}x = 1\] and \[\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\] to complete the proof.
Complete step by step answer:
Let us start proving by assigning the left-hand side of the equation to the LHS.
\[LHS = {\cosh ^2}x{\cos ^2}x - {\sinh ^2}x{\sin ^2}x.........(1)\]
Hyperbolic functions are similar to trigonometric functions but they are defined in terms of the exponential function. Like, sin x and cos x is defined on a circle, sinh x and cosh x are defined on a hyperbola, thus giving its name. The point (cos t, sin t) lies on the circle.
Similarly, the point (cosh t, sinh t) lies on a hyperbola.
We know the formula for hyperbolic cosine and sine in terms of exponential function.
\[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}..........(2)\]
\[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}..........(3)\]
Substituting equation (2) and equation (3) in equation (1), we get:
\[LHS = {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2}{\cos ^2}x - {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2}{\sin ^2}x\]
Evaluating the squares, we get:
\[LHS = \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right){\cos ^2}x - \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right){\sin ^2}x\]
Grouping together the common exponential terms, we get:
\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{2}{4}({\cos ^2}x + {\sin ^2}x)\]
We know that \[{\cos ^2}x + {\sin ^2}x = 1\], hence, we have:
\[LHS = \dfrac{{{e^{2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{{{e^{ - 2x}}}}{4}({\cos ^2}x - {\sin ^2}x) + \dfrac{1}{2}\]
We know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\], hence, we have:
\[LHS = \dfrac{{{e^{2x}}}}{4}(\cos 2x) + \dfrac{{{e^{ - 2x}}}}{4}(\cos 2x) + \dfrac{1}{2}\]
Now, taking cos2x as a common term, we have:
\[LHS = \cos 2x\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) + \dfrac{1}{2}\]
Now using equation (2), the term inside the bracket can be expressed in terms of cosh2x.
Hence, we get:
\[LHS = \cos 2x\left( {\dfrac{{\cosh 2x}}{2}} \right) + \dfrac{1}{2}\]
Taking the factor of half as a common term, we have:
\[LHS = \dfrac{1}{2}\left( {1 + \cos 2x\cosh 2x} \right)\]
The right hand side of the equation is nothing but the right hand side of the proof, hence, we get:
\[LHS = RHS\]
Hence, we proved.
Note: You can also use the relation between the hyperbolic sine and cosine, \[{\cosh ^2}x - {\sinh ^2}x = 1\] and \[\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\] to complete the proof.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Tropic of Cancer passes through how many states? Name them.

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE

What is per capita income

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
