
Prove the following equation:
$\left( {1 + {{\tan }^2}A} \right)\left( {1 + \dfrac{1}{{{{\tan }^2}A}}} \right) = \dfrac{1}{{{{\sin }^2}A - {{\sin }^4}A}}$.
Answer
603k+ views
Use formulae $1 + {\tan ^2}A = {\sec ^2}A$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$ to solve the given equation.
From the question, left hand side is:
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {1 + \dfrac{1}{{{{\tan }^2}A}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {\dfrac{{1 + {{\tan }^2}A}}{{{{\tan }^2}A}}} \right) \\
$
We know that $1 + {\tan ^2}A = {\sec ^2}A$, putting this we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{se}}{{\text{c}}^2}A\left( {\dfrac{{{\text{se}}{{\text{c}}^2}A}}{{{{\tan }^2}A}}} \right)$
Further, we know that $\tan A = \dfrac{{\sin A}}{{\cos A}}$ and $\sec A = \dfrac{1}{{\cos A}}$. Using these formulae, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A}}\left( {\dfrac{{\dfrac{1}{{{{\cos }^2}A}}}}{{\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A{{\sin }^2}A}}, \\
\]
Putting ${\cos ^2}A = 1 - {\sin ^2}A$, well get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A\left( {1 - {{\sin }^2}A} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A - {{\sin }^4}A}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{. = R}}{\text{.H}}{\text{.S}}{\text{.}} \\
\]
Thus, this is the required proof.
Note: We can also start with the right hand side and prove that it is coming equal to the left hand side.
From the question, left hand side is:
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {1 + \dfrac{1}{{{{\tan }^2}A}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {\dfrac{{1 + {{\tan }^2}A}}{{{{\tan }^2}A}}} \right) \\
$
We know that $1 + {\tan ^2}A = {\sec ^2}A$, putting this we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{se}}{{\text{c}}^2}A\left( {\dfrac{{{\text{se}}{{\text{c}}^2}A}}{{{{\tan }^2}A}}} \right)$
Further, we know that $\tan A = \dfrac{{\sin A}}{{\cos A}}$ and $\sec A = \dfrac{1}{{\cos A}}$. Using these formulae, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A}}\left( {\dfrac{{\dfrac{1}{{{{\cos }^2}A}}}}{{\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A{{\sin }^2}A}}, \\
\]
Putting ${\cos ^2}A = 1 - {\sin ^2}A$, well get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A\left( {1 - {{\sin }^2}A} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A - {{\sin }^4}A}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{. = R}}{\text{.H}}{\text{.S}}{\text{.}} \\
\]
Thus, this is the required proof.
Note: We can also start with the right hand side and prove that it is coming equal to the left hand side.
Recently Updated Pages
Which city will host the Durand Cup 2021?

Best Indian Airport 2021 Skytrax World Airport Awards Winner

India's First 'Water Plus' City Under Swachh Survekshan 2021?

ICC Campaigns for Cricket at _____ LA Olympics

India and ______ Set to Conduct First Naval Exercise Al-Mohed

Which State Renamed Kakori Train Conspiracy to Train Action?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

