
Prove the following equation:
$\left( {1 + {{\tan }^2}A} \right)\left( {1 + \dfrac{1}{{{{\tan }^2}A}}} \right) = \dfrac{1}{{{{\sin }^2}A - {{\sin }^4}A}}$.
Answer
597.3k+ views
Use formulae $1 + {\tan ^2}A = {\sec ^2}A$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$ to solve the given equation.
From the question, left hand side is:
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {1 + \dfrac{1}{{{{\tan }^2}A}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {\dfrac{{1 + {{\tan }^2}A}}{{{{\tan }^2}A}}} \right) \\
$
We know that $1 + {\tan ^2}A = {\sec ^2}A$, putting this we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{se}}{{\text{c}}^2}A\left( {\dfrac{{{\text{se}}{{\text{c}}^2}A}}{{{{\tan }^2}A}}} \right)$
Further, we know that $\tan A = \dfrac{{\sin A}}{{\cos A}}$ and $\sec A = \dfrac{1}{{\cos A}}$. Using these formulae, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A}}\left( {\dfrac{{\dfrac{1}{{{{\cos }^2}A}}}}{{\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A{{\sin }^2}A}}, \\
\]
Putting ${\cos ^2}A = 1 - {\sin ^2}A$, well get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A\left( {1 - {{\sin }^2}A} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A - {{\sin }^4}A}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{. = R}}{\text{.H}}{\text{.S}}{\text{.}} \\
\]
Thus, this is the required proof.
Note: We can also start with the right hand side and prove that it is coming equal to the left hand side.
From the question, left hand side is:
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {1 + \dfrac{1}{{{{\tan }^2}A}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {\dfrac{{1 + {{\tan }^2}A}}{{{{\tan }^2}A}}} \right) \\
$
We know that $1 + {\tan ^2}A = {\sec ^2}A$, putting this we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{se}}{{\text{c}}^2}A\left( {\dfrac{{{\text{se}}{{\text{c}}^2}A}}{{{{\tan }^2}A}}} \right)$
Further, we know that $\tan A = \dfrac{{\sin A}}{{\cos A}}$ and $\sec A = \dfrac{1}{{\cos A}}$. Using these formulae, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A}}\left( {\dfrac{{\dfrac{1}{{{{\cos }^2}A}}}}{{\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A{{\sin }^2}A}}, \\
\]
Putting ${\cos ^2}A = 1 - {\sin ^2}A$, well get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A\left( {1 - {{\sin }^2}A} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A - {{\sin }^4}A}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{. = R}}{\text{.H}}{\text{.S}}{\text{.}} \\
\]
Thus, this is the required proof.
Note: We can also start with the right hand side and prove that it is coming equal to the left hand side.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Which is the main party in the National Democratic class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

