
Prove the following equation:
$\left( {1 + {{\tan }^2}A} \right)\left( {1 + \dfrac{1}{{{{\tan }^2}A}}} \right) = \dfrac{1}{{{{\sin }^2}A - {{\sin }^4}A}}$.
Answer
607.5k+ views
Use formulae $1 + {\tan ^2}A = {\sec ^2}A$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$ to solve the given equation.
From the question, left hand side is:
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {1 + \dfrac{1}{{{{\tan }^2}A}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {\dfrac{{1 + {{\tan }^2}A}}{{{{\tan }^2}A}}} \right) \\
$
We know that $1 + {\tan ^2}A = {\sec ^2}A$, putting this we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{se}}{{\text{c}}^2}A\left( {\dfrac{{{\text{se}}{{\text{c}}^2}A}}{{{{\tan }^2}A}}} \right)$
Further, we know that $\tan A = \dfrac{{\sin A}}{{\cos A}}$ and $\sec A = \dfrac{1}{{\cos A}}$. Using these formulae, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A}}\left( {\dfrac{{\dfrac{1}{{{{\cos }^2}A}}}}{{\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A{{\sin }^2}A}}, \\
\]
Putting ${\cos ^2}A = 1 - {\sin ^2}A$, well get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A\left( {1 - {{\sin }^2}A} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A - {{\sin }^4}A}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{. = R}}{\text{.H}}{\text{.S}}{\text{.}} \\
\]
Thus, this is the required proof.
Note: We can also start with the right hand side and prove that it is coming equal to the left hand side.
From the question, left hand side is:
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {1 + \dfrac{1}{{{{\tan }^2}A}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {1 + {{\tan }^2}A} \right)\left( {\dfrac{{1 + {{\tan }^2}A}}{{{{\tan }^2}A}}} \right) \\
$
We know that $1 + {\tan ^2}A = {\sec ^2}A$, putting this we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{se}}{{\text{c}}^2}A\left( {\dfrac{{{\text{se}}{{\text{c}}^2}A}}{{{{\tan }^2}A}}} \right)$
Further, we know that $\tan A = \dfrac{{\sin A}}{{\cos A}}$ and $\sec A = \dfrac{1}{{\cos A}}$. Using these formulae, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A}}\left( {\dfrac{{\dfrac{1}{{{{\cos }^2}A}}}}{{\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}}}} \right), \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\cos }^2}A{{\sin }^2}A}}, \\
\]
Putting ${\cos ^2}A = 1 - {\sin ^2}A$, well get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A\left( {1 - {{\sin }^2}A} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{{{\sin }^2}A - {{\sin }^4}A}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{. = R}}{\text{.H}}{\text{.S}}{\text{.}} \\
\]
Thus, this is the required proof.
Note: We can also start with the right hand side and prove that it is coming equal to the left hand side.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

Write the difference between soap and detergent class 10 chemistry CBSE

