
Prove that\[\dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = 1.\]
Answer
578.1k+ views
Hint: To prove this, we simplify both the fractions separately from \[\dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}}\] by using laws of indices given below. Since, we have the same base i.e. x, so we can apply the following laws.
Laws of indices: $(i)$ ${a^m} \cdot {a^n} = {a^{m + n}}$
$(ii)$ $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$(iii)$ ${a^{ - n}} = \dfrac{1}{{{a^n}}}$
Complete step-by-step answer:
Simplify \[\dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}}\] by using laws of indices.
Use the law of indices ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ and rewrite the terms.
\[\therefore \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{1}{{1 + \dfrac{{{x^a}}}{{{x^b}}}}} + \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^a}}}}}\]
Find the least common denominator and take LCM in the denominator of both fractions.
$ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{1}{{\dfrac{{{x^b} + {x^a}}}{{{x^b}}}}} + \dfrac{1}{{\dfrac{{{x^a} + {x^b}}}{{{x^a}}}}}$
Remember, that dividing by fraction is the same as flipping the fraction in the denominator and then multiplying it with the numerator.
So flip the fraction in the denominator and multiply it to the numerator.
$ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{{{x^b}}}{{{x^a} + {x^b}}} + \dfrac{{{x^a}}}{{{x^a} + {x^b}}}$
Take LCM of both the fractions.
\[ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{{{x^b} + {x^a}}}{{{x^a} + {x^b}}}\]
Cancel the same terms from numerator and denominator.
\[ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = 1\]
Hence proved.
Additional Information: * When the base is the same then only we can apply the law of indices, be it multiplication of numbers with the same base or division of numbers with the same base.
* Always keep in mind that any number with power 0 will be equal to 1.
\[ \Rightarrow {a^0} = 1\]
* If powers are in fraction form, then we can write them as
\[ \Rightarrow {a^{\dfrac{m}{n}}} = {({a^m})^{\dfrac{1}{n}}}\] which means we take nth root of the term inside the bracket, so we can write
\[ \Rightarrow {a^{\dfrac{m}{n}}} = \sqrt[n]{{{a^m}}}\]
* Any number with the power m means that the number is multiplied to itself m number of times.
So, we can write \[{x^m} = \underbrace {x \times x \times x........ \times x}_m\]
Note: Students make mistake of assuming the values \[{x^{b - a}},{x^{a - b}}\]as some variables and try solving the fraction which is wrong way to proceed with the question. So, keep in mind we have to use formulas which make solutions easy and not more complex.
Laws of indices: $(i)$ ${a^m} \cdot {a^n} = {a^{m + n}}$
$(ii)$ $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$(iii)$ ${a^{ - n}} = \dfrac{1}{{{a^n}}}$
Complete step-by-step answer:
Simplify \[\dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}}\] by using laws of indices.
Use the law of indices ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ and rewrite the terms.
\[\therefore \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{1}{{1 + \dfrac{{{x^a}}}{{{x^b}}}}} + \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^a}}}}}\]
Find the least common denominator and take LCM in the denominator of both fractions.
$ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{1}{{\dfrac{{{x^b} + {x^a}}}{{{x^b}}}}} + \dfrac{1}{{\dfrac{{{x^a} + {x^b}}}{{{x^a}}}}}$
Remember, that dividing by fraction is the same as flipping the fraction in the denominator and then multiplying it with the numerator.
So flip the fraction in the denominator and multiply it to the numerator.
$ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{{{x^b}}}{{{x^a} + {x^b}}} + \dfrac{{{x^a}}}{{{x^a} + {x^b}}}$
Take LCM of both the fractions.
\[ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{{{x^b} + {x^a}}}{{{x^a} + {x^b}}}\]
Cancel the same terms from numerator and denominator.
\[ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = 1\]
Hence proved.
Additional Information: * When the base is the same then only we can apply the law of indices, be it multiplication of numbers with the same base or division of numbers with the same base.
* Always keep in mind that any number with power 0 will be equal to 1.
\[ \Rightarrow {a^0} = 1\]
* If powers are in fraction form, then we can write them as
\[ \Rightarrow {a^{\dfrac{m}{n}}} = {({a^m})^{\dfrac{1}{n}}}\] which means we take nth root of the term inside the bracket, so we can write
\[ \Rightarrow {a^{\dfrac{m}{n}}} = \sqrt[n]{{{a^m}}}\]
* Any number with the power m means that the number is multiplied to itself m number of times.
So, we can write \[{x^m} = \underbrace {x \times x \times x........ \times x}_m\]
Note: Students make mistake of assuming the values \[{x^{b - a}},{x^{a - b}}\]as some variables and try solving the fraction which is wrong way to proceed with the question. So, keep in mind we have to use formulas which make solutions easy and not more complex.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The slogan Jai Hind was given by A Lal Bahadur Shastri class 10 social science CBSE

Show that the points 11 52 and 9 5 are collinear-class-10-maths-CBSE

List out three methods of soil conservation

Find the mode of 10 12 11 10 15 20 19 21 11 9 10 class 10 maths CBSE

The curved surface area of a cone of slant height l class 10 maths CBSE

The involuntary action in the body are controlled by class 10 biology CBSE

