
Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
Answer
608.4k+ views
Hint: Consider any general equation of circle and take any point on the circle in parametric form. Find the slope of the tangent at the point of contact of the tangent and the circle and the line joining the centre of the circle to the point of contact. Use the fact that the product of slopes of two perpendicular lines is \[-1\].
Take any general equation of circle of the form \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\]. We have to prove that tangent at any point on the circle is perpendicular to the radius through the point of contact.
We know that the centre of the circle of the form \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\] is \[O\left( h,k \right)\].
We will consider any general point on the circle of the form \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\] as \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
We will now find the slope of line joining centre \[O\left( h,k \right)\] and \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
We know that the slope of line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is \[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\].
Substituting \[{{x}_{1}}=h,{{y}_{1}}=k,{{x}_{2}}=h+r\cos \theta ,{{y}_{2}}=k+r\sin \theta \] in the above equation, we have \[\dfrac{k+r\sin \theta -k}{h+r\cos \theta -h}\] as the slope of line joining centre \[O\left( h,k \right)\] and \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
Thus, we have \[{{m}_{1}}=\dfrac{k+r\sin \theta -k}{h+r\cos \theta -h}=\dfrac{r\sin \theta }{r\cos \theta }=\tan \theta \] \[...\left( 1 \right)\] as the slope of line joining centre\[O\left( h,k \right)\] and \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
Now, we will find the slope of the tangent at point \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
We know that the slope of tangent at any point is represented by \[\dfrac{dy}{dx}\]at that point.
Thus, to find the slope of tangent at point \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\], we will differentiate the equation of circle \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\].
\[\Rightarrow \dfrac{d}{dx}\left( {{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}} \right)=\dfrac{d}{dx}\left( {{r}^{2}} \right)\]
We will use sum rule of differentiation of functions which states that if \[y=f\left( x \right)+g\left( x \right)\]then\[\dfrac{dy}{dx}=\dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right)\].
Thus, we have \[\dfrac{d}{dx}{{\left( x-h \right)}^{2}}+\dfrac{d}{dx}{{\left( y-k \right)}^{2}}=\dfrac{d}{dx}\left( {{r}^{2}} \right)\]. \[...\left( 2 \right)\]
We know that differentiation of constant is zero with respect to any variable.
We know that differentiation of any function of the form \[y=a{{\left( x-b \right)}^{n}}+c\] is \[\dfrac{dy}{dx}=an{{\left( x-b \right)}^{n-1}}\].
Thus, we have \[\dfrac{d}{dx}{{\left( x-h \right)}^{2}}=2\left( x-h \right)\]. \[...\left( 3 \right)\]
To find the value of \[\dfrac{d}{dx}{{\left( y-k \right)}^{2}}\], we will multiply and divide the given equation by \[dy\].
Thus, we have \[\dfrac{d}{dx}{{\left( y-k \right)}^{2}}=\dfrac{d}{dy}{{\left( y-k \right)}^{2}}\times \dfrac{dy}{dx}\].
We know that \[\dfrac{d}{dy}{{\left( y-k \right)}^{2}}=2\left( y-k \right)\].
Thus, we have \[\dfrac{d}{dx}{{\left( y-k \right)}^{2}}=\dfrac{d}{dy}{{\left( y-k \right)}^{2}}\times \dfrac{dy}{dx}=2\left( y-k \right)\dfrac{dy}{dx}\]. \[...\left( 4 \right)\]
Substituting equation \[\left( 3 \right),\left( 4 \right)\]in equation\[\left( 2 \right)\], we have \[\dfrac{d}{dx}{{\left( x-h \right)}^{2}}+\dfrac{d}{dx}{{\left( y-k \right)}^{2}}=\dfrac{d}{dx}\left( {{r}^{2}} \right)\Rightarrow 2\left( x-h \right)+2\left( y-k \right)\dfrac{dy}{dx}=0\].
Simplifying the equation, we get \[\dfrac{dy}{dx}=\dfrac{h-x}{y-k}\].
Substituting the point \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\] in the above slope of tangent, we have \[\dfrac{dy}{dx}=\dfrac{h-x}{y-k}=\dfrac{h-h-r\cos \theta }{k+r\sin \theta -k}=\dfrac{-r\cos \theta }{r\sin \theta }=-\cot \theta ={{m}_{2}}\] \[...\left( 5 \right)\]
Multiplying equation \[\left( 1 \right)\]and\[\left( 5 \right)\], we get \[{{m}_{1}}{{m}_{2}}=\tan \theta \left( -\cot \theta \right)=-1\].
We know that the product of slopes of two perpendicular lines is \[-1\].
Hence, the line joining the centre of the circle to the point of contact is perpendicular to the tangent of the circle.
Note: We can also take the equation of circle as \[{{x}^{2}}+{{y}^{2}}={{r}^{2}}\] and take any general point on the circle as \[\left( r\cos \theta ,r\sin \theta \right)\]and then find the slope of line joining centre of the circle to the point of contact and the slope of tangent to prove that the two lines are perpendicular to each other.
Take any general equation of circle of the form \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\]. We have to prove that tangent at any point on the circle is perpendicular to the radius through the point of contact.
We know that the centre of the circle of the form \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\] is \[O\left( h,k \right)\].
We will consider any general point on the circle of the form \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\] as \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
We will now find the slope of line joining centre \[O\left( h,k \right)\] and \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
We know that the slope of line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is \[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\].
Substituting \[{{x}_{1}}=h,{{y}_{1}}=k,{{x}_{2}}=h+r\cos \theta ,{{y}_{2}}=k+r\sin \theta \] in the above equation, we have \[\dfrac{k+r\sin \theta -k}{h+r\cos \theta -h}\] as the slope of line joining centre \[O\left( h,k \right)\] and \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
Thus, we have \[{{m}_{1}}=\dfrac{k+r\sin \theta -k}{h+r\cos \theta -h}=\dfrac{r\sin \theta }{r\cos \theta }=\tan \theta \] \[...\left( 1 \right)\] as the slope of line joining centre\[O\left( h,k \right)\] and \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
Now, we will find the slope of the tangent at point \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\].
We know that the slope of tangent at any point is represented by \[\dfrac{dy}{dx}\]at that point.
Thus, to find the slope of tangent at point \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\], we will differentiate the equation of circle \[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\].
\[\Rightarrow \dfrac{d}{dx}\left( {{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}} \right)=\dfrac{d}{dx}\left( {{r}^{2}} \right)\]
We will use sum rule of differentiation of functions which states that if \[y=f\left( x \right)+g\left( x \right)\]then\[\dfrac{dy}{dx}=\dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right)\].
Thus, we have \[\dfrac{d}{dx}{{\left( x-h \right)}^{2}}+\dfrac{d}{dx}{{\left( y-k \right)}^{2}}=\dfrac{d}{dx}\left( {{r}^{2}} \right)\]. \[...\left( 2 \right)\]
We know that differentiation of constant is zero with respect to any variable.
We know that differentiation of any function of the form \[y=a{{\left( x-b \right)}^{n}}+c\] is \[\dfrac{dy}{dx}=an{{\left( x-b \right)}^{n-1}}\].
Thus, we have \[\dfrac{d}{dx}{{\left( x-h \right)}^{2}}=2\left( x-h \right)\]. \[...\left( 3 \right)\]
To find the value of \[\dfrac{d}{dx}{{\left( y-k \right)}^{2}}\], we will multiply and divide the given equation by \[dy\].
Thus, we have \[\dfrac{d}{dx}{{\left( y-k \right)}^{2}}=\dfrac{d}{dy}{{\left( y-k \right)}^{2}}\times \dfrac{dy}{dx}\].
We know that \[\dfrac{d}{dy}{{\left( y-k \right)}^{2}}=2\left( y-k \right)\].
Thus, we have \[\dfrac{d}{dx}{{\left( y-k \right)}^{2}}=\dfrac{d}{dy}{{\left( y-k \right)}^{2}}\times \dfrac{dy}{dx}=2\left( y-k \right)\dfrac{dy}{dx}\]. \[...\left( 4 \right)\]
Substituting equation \[\left( 3 \right),\left( 4 \right)\]in equation\[\left( 2 \right)\], we have \[\dfrac{d}{dx}{{\left( x-h \right)}^{2}}+\dfrac{d}{dx}{{\left( y-k \right)}^{2}}=\dfrac{d}{dx}\left( {{r}^{2}} \right)\Rightarrow 2\left( x-h \right)+2\left( y-k \right)\dfrac{dy}{dx}=0\].
Simplifying the equation, we get \[\dfrac{dy}{dx}=\dfrac{h-x}{y-k}\].
Substituting the point \[P\left( h+r\cos \theta ,k+r\sin \theta \right)\] in the above slope of tangent, we have \[\dfrac{dy}{dx}=\dfrac{h-x}{y-k}=\dfrac{h-h-r\cos \theta }{k+r\sin \theta -k}=\dfrac{-r\cos \theta }{r\sin \theta }=-\cot \theta ={{m}_{2}}\] \[...\left( 5 \right)\]
Multiplying equation \[\left( 1 \right)\]and\[\left( 5 \right)\], we get \[{{m}_{1}}{{m}_{2}}=\tan \theta \left( -\cot \theta \right)=-1\].
We know that the product of slopes of two perpendicular lines is \[-1\].
Hence, the line joining the centre of the circle to the point of contact is perpendicular to the tangent of the circle.
Note: We can also take the equation of circle as \[{{x}^{2}}+{{y}^{2}}={{r}^{2}}\] and take any general point on the circle as \[\left( r\cos \theta ,r\sin \theta \right)\]and then find the slope of line joining centre of the circle to the point of contact and the slope of tangent to prove that the two lines are perpendicular to each other.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

