Answer
Verified
455.4k+ views
Hint: First of all, draw the diagram of cyclic quadrilateral by letting the angles and sides of the quadrilateral. Then use the angle sum property of a quadrilateral and property of angles in the same segment to prove the given statement.
Complete step-by-step answer:
Let $ABCD$be the given cyclic quadrilateral of a circle with centre at $O$.
Now construct a cyclic quadrilateral by joining the diagonal of the quadrilateral and naming the angles as shown in the figure:
We have to prove that sum of the angles of opposite sides are ${180^ \circ }$
i.e. $\angle BAD + \angle BCD = \pi $
$\angle ABC + \angle ADC = \pi $
By angle sum property of Quadrilateral
$\angle A + \angle B + \angle C + \angle D = 2\pi $…………………………………………………… (1)
By the property of angles in the same segment are equal
at chord $\overrightarrow {AB} {\text{, }}\angle e = \angle h$
at chord $\overrightarrow {BC} {\text{, }}\angle a = \angle g$
at chord $\overrightarrow {CD} {\text{, }}\angle b = \angle d$
at chord $\overrightarrow {AD,} {\text{ }}\angle c = \angle f$
From equation (1) we have
\[
\Rightarrow \angle A + \angle B + \angle C + \angle D = 2\pi \\
\Rightarrow \angle a + \angle b + \angle c + \angle d + \angle e + \angle f + \angle g + \angle h = 2\pi \\
\]
Using the above relations, we get
\[
\Rightarrow 2\left( {\angle a + \angle b + \angle e + \angle f} \right) = 2\pi \\
\Rightarrow \angle a + \angle b + \angle e + \angle f = \pi \\
\Rightarrow \left( {\angle a + \angle b} \right) + \left( {\angle e + \angle f} \right) = \pi \\
\]
From the figure clearly, we have
$\angle BAD + \angle BCD = \pi $
Similarly, we can write
\[\angle ABC + \angle ADC = \pi \]
Hence the sum of opposite angles of a Cyclic Quadrilateral is \[\pi \].
Note: Angle sum property of quadrilateral means the sum of all angles in the quadrilateral is equal to \[2\pi \]. Always remember that the angles in the same segment of quadrilateral are equal. Remember the given statement as a property of cyclic quadrilaterals.
Complete step-by-step answer:
Let $ABCD$be the given cyclic quadrilateral of a circle with centre at $O$.
Now construct a cyclic quadrilateral by joining the diagonal of the quadrilateral and naming the angles as shown in the figure:
We have to prove that sum of the angles of opposite sides are ${180^ \circ }$
i.e. $\angle BAD + \angle BCD = \pi $
$\angle ABC + \angle ADC = \pi $
By angle sum property of Quadrilateral
$\angle A + \angle B + \angle C + \angle D = 2\pi $…………………………………………………… (1)
By the property of angles in the same segment are equal
at chord $\overrightarrow {AB} {\text{, }}\angle e = \angle h$
at chord $\overrightarrow {BC} {\text{, }}\angle a = \angle g$
at chord $\overrightarrow {CD} {\text{, }}\angle b = \angle d$
at chord $\overrightarrow {AD,} {\text{ }}\angle c = \angle f$
From equation (1) we have
\[
\Rightarrow \angle A + \angle B + \angle C + \angle D = 2\pi \\
\Rightarrow \angle a + \angle b + \angle c + \angle d + \angle e + \angle f + \angle g + \angle h = 2\pi \\
\]
Using the above relations, we get
\[
\Rightarrow 2\left( {\angle a + \angle b + \angle e + \angle f} \right) = 2\pi \\
\Rightarrow \angle a + \angle b + \angle e + \angle f = \pi \\
\Rightarrow \left( {\angle a + \angle b} \right) + \left( {\angle e + \angle f} \right) = \pi \\
\]
From the figure clearly, we have
$\angle BAD + \angle BCD = \pi $
Similarly, we can write
\[\angle ABC + \angle ADC = \pi \]
Hence the sum of opposite angles of a Cyclic Quadrilateral is \[\pi \].
Note: Angle sum property of quadrilateral means the sum of all angles in the quadrilateral is equal to \[2\pi \]. Always remember that the angles in the same segment of quadrilateral are equal. Remember the given statement as a property of cyclic quadrilaterals.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life