
Prove that the sum of opposite sides of a cyclic quadrilateral is \[\pi \]
Answer
569.1k+ views
Hint: First of all, draw the diagram of cyclic quadrilateral by letting the angles and sides of the quadrilateral. Then use the angle sum property of a quadrilateral and property of angles in the same segment to prove the given statement.
Complete step-by-step answer:
Let $ABCD$be the given cyclic quadrilateral of a circle with centre at $O$.
Now construct a cyclic quadrilateral by joining the diagonal of the quadrilateral and naming the angles as shown in the figure:
We have to prove that sum of the angles of opposite sides are ${180^ \circ }$
i.e. $\angle BAD + \angle BCD = \pi $
$\angle ABC + \angle ADC = \pi $
By angle sum property of Quadrilateral
$\angle A + \angle B + \angle C + \angle D = 2\pi $…………………………………………………… (1)
By the property of angles in the same segment are equal
at chord $\overrightarrow {AB} {\text{, }}\angle e = \angle h$
at chord $\overrightarrow {BC} {\text{, }}\angle a = \angle g$
at chord $\overrightarrow {CD} {\text{, }}\angle b = \angle d$
at chord $\overrightarrow {AD,} {\text{ }}\angle c = \angle f$
From equation (1) we have
\[
\Rightarrow \angle A + \angle B + \angle C + \angle D = 2\pi \\
\Rightarrow \angle a + \angle b + \angle c + \angle d + \angle e + \angle f + \angle g + \angle h = 2\pi \\
\]
Using the above relations, we get
\[
\Rightarrow 2\left( {\angle a + \angle b + \angle e + \angle f} \right) = 2\pi \\
\Rightarrow \angle a + \angle b + \angle e + \angle f = \pi \\
\Rightarrow \left( {\angle a + \angle b} \right) + \left( {\angle e + \angle f} \right) = \pi \\
\]
From the figure clearly, we have
$\angle BAD + \angle BCD = \pi $
Similarly, we can write
\[\angle ABC + \angle ADC = \pi \]
Hence the sum of opposite angles of a Cyclic Quadrilateral is \[\pi \].
Note: Angle sum property of quadrilateral means the sum of all angles in the quadrilateral is equal to \[2\pi \]. Always remember that the angles in the same segment of quadrilateral are equal. Remember the given statement as a property of cyclic quadrilaterals.
Complete step-by-step answer:
Let $ABCD$be the given cyclic quadrilateral of a circle with centre at $O$.
Now construct a cyclic quadrilateral by joining the diagonal of the quadrilateral and naming the angles as shown in the figure:
We have to prove that sum of the angles of opposite sides are ${180^ \circ }$
i.e. $\angle BAD + \angle BCD = \pi $
$\angle ABC + \angle ADC = \pi $
By angle sum property of Quadrilateral
$\angle A + \angle B + \angle C + \angle D = 2\pi $…………………………………………………… (1)
By the property of angles in the same segment are equal
at chord $\overrightarrow {AB} {\text{, }}\angle e = \angle h$
at chord $\overrightarrow {BC} {\text{, }}\angle a = \angle g$
at chord $\overrightarrow {CD} {\text{, }}\angle b = \angle d$
at chord $\overrightarrow {AD,} {\text{ }}\angle c = \angle f$
From equation (1) we have
\[
\Rightarrow \angle A + \angle B + \angle C + \angle D = 2\pi \\
\Rightarrow \angle a + \angle b + \angle c + \angle d + \angle e + \angle f + \angle g + \angle h = 2\pi \\
\]
Using the above relations, we get
\[
\Rightarrow 2\left( {\angle a + \angle b + \angle e + \angle f} \right) = 2\pi \\
\Rightarrow \angle a + \angle b + \angle e + \angle f = \pi \\
\Rightarrow \left( {\angle a + \angle b} \right) + \left( {\angle e + \angle f} \right) = \pi \\
\]
From the figure clearly, we have
$\angle BAD + \angle BCD = \pi $
Similarly, we can write
\[\angle ABC + \angle ADC = \pi \]
Hence the sum of opposite angles of a Cyclic Quadrilateral is \[\pi \].
Note: Angle sum property of quadrilateral means the sum of all angles in the quadrilateral is equal to \[2\pi \]. Always remember that the angles in the same segment of quadrilateral are equal. Remember the given statement as a property of cyclic quadrilaterals.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

