Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
Answer
Verified
508.5k+ views
Hint: The ratios of the corresponding sides of two similar triangles are the same. Use this theorem and find the area of triangles in terms of their side and altitude and then compare areas of both triangles.
Suppose we have two similar triangles of sides ${a_1},{b_1},{c_1}$and ${a_2},{b_2},{c_2}$respectively. Further let ${h_1}$and ${h_2}$be the altitudes of the triangles drawn from the opposite vertices on the sides of length ${a_1}$and ${a_2}$of respective triangles.
We know that if two triangles are similar then the ratios of their corresponding sides are the same. Therefore, using this property we have:
$ \Rightarrow \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{{{h_1}}}{{{h_2}}}$
Now, if have to calculate the areas of triangles we can apply formula as:
$ \Rightarrow $Area $ = \dfrac{1}{2} \times $Base $ \times $Height.
Thus, the area of the first will be:
$
\Rightarrow {A_1} = \dfrac{1}{2} \times {a_1} \times {h_1}, \\
\Rightarrow {A_1} = \dfrac{1}{2}{a_1}{h_{1.}} \\
$
Similarly the area of the second circle will be:
$
\Rightarrow {A_2} = \dfrac{1}{2} \times {a_2} \times {h_2}, \\
\Rightarrow {A_2} = \dfrac{1}{2}{a_2}{h_2}. \\
$
The ratio of their areas is:
$
\Rightarrow \dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{\dfrac{1}{2}{a_1}{h_{1.}}}}{{\dfrac{1}{2}{a_2}{h_2}}}, \\
\Rightarrow \dfrac{{{A_1}}}{{{A_2}}} = \left( {\dfrac{{{a_1}}}{{{a_2}}}} \right).\left( {\dfrac{{{h_1}}}{{{h_2}}}} \right) \\
$
And since we have already determined$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{{{h_1}}}{{{h_2}}}$. Using this result, we’ll get:
$ \Rightarrow \dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{{a_1}^2}}{{{a_2}^2}} = \dfrac{{{b_1}^2}}{{{b_2}^2}} = \dfrac{{{c_1}^2}}{{{c_2}^2}} = \dfrac{{{h_1}^2}}{{{h_2}^2}}$
Therefore, the ratio of the areas of similar triangles is equal to the ratio of the squares of their corresponding sides. Hence, this is the required proof.
Note: If two triangles are similar then the ratio of their corresponding sides are same along with the ratio of their corresponding altitudes, their circumradius and their inradius. The measurement of their corresponding angles is also the same.
Suppose we have two similar triangles of sides ${a_1},{b_1},{c_1}$and ${a_2},{b_2},{c_2}$respectively. Further let ${h_1}$and ${h_2}$be the altitudes of the triangles drawn from the opposite vertices on the sides of length ${a_1}$and ${a_2}$of respective triangles.
We know that if two triangles are similar then the ratios of their corresponding sides are the same. Therefore, using this property we have:
$ \Rightarrow \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{{{h_1}}}{{{h_2}}}$
Now, if have to calculate the areas of triangles we can apply formula as:
$ \Rightarrow $Area $ = \dfrac{1}{2} \times $Base $ \times $Height.
Thus, the area of the first will be:
$
\Rightarrow {A_1} = \dfrac{1}{2} \times {a_1} \times {h_1}, \\
\Rightarrow {A_1} = \dfrac{1}{2}{a_1}{h_{1.}} \\
$
Similarly the area of the second circle will be:
$
\Rightarrow {A_2} = \dfrac{1}{2} \times {a_2} \times {h_2}, \\
\Rightarrow {A_2} = \dfrac{1}{2}{a_2}{h_2}. \\
$
The ratio of their areas is:
$
\Rightarrow \dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{\dfrac{1}{2}{a_1}{h_{1.}}}}{{\dfrac{1}{2}{a_2}{h_2}}}, \\
\Rightarrow \dfrac{{{A_1}}}{{{A_2}}} = \left( {\dfrac{{{a_1}}}{{{a_2}}}} \right).\left( {\dfrac{{{h_1}}}{{{h_2}}}} \right) \\
$
And since we have already determined$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{{{h_1}}}{{{h_2}}}$. Using this result, we’ll get:
$ \Rightarrow \dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{{a_1}^2}}{{{a_2}^2}} = \dfrac{{{b_1}^2}}{{{b_2}^2}} = \dfrac{{{c_1}^2}}{{{c_2}^2}} = \dfrac{{{h_1}^2}}{{{h_2}^2}}$
Therefore, the ratio of the areas of similar triangles is equal to the ratio of the squares of their corresponding sides. Hence, this is the required proof.
Note: If two triangles are similar then the ratio of their corresponding sides are same along with the ratio of their corresponding altitudes, their circumradius and their inradius. The measurement of their corresponding angles is also the same.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE