Answer
Verified
495k+ views
Hint: The given problem is related to the equation of the tangent to a circle. Try to remember the equation of a tangent to a circle in parametric form.
Complete step-by-step answer:
We will consider the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$. We know the radius of this circle is $r$ and the center of this circle is at $(0,0)$ .
We will consider a point $x=r\cos \theta $ and $y=r\sin \theta $ , i.e. $(r\cos \theta ,r\sin \theta )$ , on the circle, where $\theta $ is a parameter.
We know, the equation of the tangent at $({{x}_{1}},{{y}_{1}})$ is given as $x{{x}_{1}}+y{{y}_{1}}={{r}^{2}}$ .
So, the equation of the tangent at $(r\cos \theta ,r\sin \theta )$ is given as $x.r\cos \theta +y.r\sin \theta ={{r}^{2}}$
$\Rightarrow x\cos \theta +y\sin \theta =r....(i)$
Now, we know, the slope of the line given by $ax+by+c=0$ is given as $m=-\dfrac{a}{b}$
So, the slope of tangent given by equation$(i)$ is given as $m=-\dfrac{\cos \theta }{\sin \theta }=-\cot \theta $
Now, we know the product of two perpendicular lines is equal to $-1$ .
Let ${{m}_{\bot }}$ be the slope of the line perpendicular to the tangent. So, $m\times {{m}_{\bot }}=-1$
$\Rightarrow -\cot \theta \times {{m}_{\bot }}=-1$
$\Rightarrow {{m}_{\bot }}=\dfrac{-1}{-\cot \theta }=\tan \theta $
So, the slope of the line perpendicular to the tangent at $(r\cos \theta ,r\sin \theta )$ is given as ${{m}_{\bot }}=\tan \theta $ .
Now, we know, the equation of a line with slope $m$ and passing through $({{x}_{1}},{{y}_{1}})$ is given as $(y-{{y}_{1}})=m(x-{{x}_{1}})$.
So, the equation of the line passing through $(r\cos \theta ,r\sin \theta )$ and having slope ${{m}_{\bot }}=\tan \theta $ is given as $y-r\sin \theta =\tan \theta (x-r\cos \theta )$ .
$\Rightarrow y-r\sin \theta =x\tan \theta -r\sin \theta $
$\Rightarrow y-x\tan \theta =0.....(ii)$
Now, there is no constant term in equation $(ii)$ . So, the line represented by equation $(ii)$ will always pass through the origin, which is the center of the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
Hence, any line perpendicular at the point of contact of a tangent to a circle passes through the center of the circle.
Note: While making substitutions, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.
Complete step-by-step answer:
We will consider the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$. We know the radius of this circle is $r$ and the center of this circle is at $(0,0)$ .
We will consider a point $x=r\cos \theta $ and $y=r\sin \theta $ , i.e. $(r\cos \theta ,r\sin \theta )$ , on the circle, where $\theta $ is a parameter.
We know, the equation of the tangent at $({{x}_{1}},{{y}_{1}})$ is given as $x{{x}_{1}}+y{{y}_{1}}={{r}^{2}}$ .
So, the equation of the tangent at $(r\cos \theta ,r\sin \theta )$ is given as $x.r\cos \theta +y.r\sin \theta ={{r}^{2}}$
$\Rightarrow x\cos \theta +y\sin \theta =r....(i)$
Now, we know, the slope of the line given by $ax+by+c=0$ is given as $m=-\dfrac{a}{b}$
So, the slope of tangent given by equation$(i)$ is given as $m=-\dfrac{\cos \theta }{\sin \theta }=-\cot \theta $
Now, we know the product of two perpendicular lines is equal to $-1$ .
Let ${{m}_{\bot }}$ be the slope of the line perpendicular to the tangent. So, $m\times {{m}_{\bot }}=-1$
$\Rightarrow -\cot \theta \times {{m}_{\bot }}=-1$
$\Rightarrow {{m}_{\bot }}=\dfrac{-1}{-\cot \theta }=\tan \theta $
So, the slope of the line perpendicular to the tangent at $(r\cos \theta ,r\sin \theta )$ is given as ${{m}_{\bot }}=\tan \theta $ .
Now, we know, the equation of a line with slope $m$ and passing through $({{x}_{1}},{{y}_{1}})$ is given as $(y-{{y}_{1}})=m(x-{{x}_{1}})$.
So, the equation of the line passing through $(r\cos \theta ,r\sin \theta )$ and having slope ${{m}_{\bot }}=\tan \theta $ is given as $y-r\sin \theta =\tan \theta (x-r\cos \theta )$ .
$\Rightarrow y-r\sin \theta =x\tan \theta -r\sin \theta $
$\Rightarrow y-x\tan \theta =0.....(ii)$
Now, there is no constant term in equation $(ii)$ . So, the line represented by equation $(ii)$ will always pass through the origin, which is the center of the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
Hence, any line perpendicular at the point of contact of a tangent to a circle passes through the center of the circle.
Note: While making substitutions, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it