
Prove that the perpendicular at the point of contact of a tangent to a circle passes through the center.
Answer
621k+ views
Hint: The given problem is related to the equation of the tangent to a circle. Try to remember the equation of a tangent to a circle in parametric form.
Complete step-by-step answer:
We will consider the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$. We know the radius of this circle is $r$ and the center of this circle is at $(0,0)$ .
We will consider a point $x=r\cos \theta $ and $y=r\sin \theta $ , i.e. $(r\cos \theta ,r\sin \theta )$ , on the circle, where $\theta $ is a parameter.
We know, the equation of the tangent at $({{x}_{1}},{{y}_{1}})$ is given as $x{{x}_{1}}+y{{y}_{1}}={{r}^{2}}$ .
So, the equation of the tangent at $(r\cos \theta ,r\sin \theta )$ is given as $x.r\cos \theta +y.r\sin \theta ={{r}^{2}}$
$\Rightarrow x\cos \theta +y\sin \theta =r....(i)$
Now, we know, the slope of the line given by $ax+by+c=0$ is given as $m=-\dfrac{a}{b}$
So, the slope of tangent given by equation$(i)$ is given as $m=-\dfrac{\cos \theta }{\sin \theta }=-\cot \theta $
Now, we know the product of two perpendicular lines is equal to $-1$ .
Let ${{m}_{\bot }}$ be the slope of the line perpendicular to the tangent. So, $m\times {{m}_{\bot }}=-1$
$\Rightarrow -\cot \theta \times {{m}_{\bot }}=-1$
$\Rightarrow {{m}_{\bot }}=\dfrac{-1}{-\cot \theta }=\tan \theta $
So, the slope of the line perpendicular to the tangent at $(r\cos \theta ,r\sin \theta )$ is given as ${{m}_{\bot }}=\tan \theta $ .
Now, we know, the equation of a line with slope $m$ and passing through $({{x}_{1}},{{y}_{1}})$ is given as $(y-{{y}_{1}})=m(x-{{x}_{1}})$.
So, the equation of the line passing through $(r\cos \theta ,r\sin \theta )$ and having slope ${{m}_{\bot }}=\tan \theta $ is given as $y-r\sin \theta =\tan \theta (x-r\cos \theta )$ .
$\Rightarrow y-r\sin \theta =x\tan \theta -r\sin \theta $
$\Rightarrow y-x\tan \theta =0.....(ii)$
Now, there is no constant term in equation $(ii)$ . So, the line represented by equation $(ii)$ will always pass through the origin, which is the center of the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
Hence, any line perpendicular at the point of contact of a tangent to a circle passes through the center of the circle.
Note: While making substitutions, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.
Complete step-by-step answer:
We will consider the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$. We know the radius of this circle is $r$ and the center of this circle is at $(0,0)$ .
We will consider a point $x=r\cos \theta $ and $y=r\sin \theta $ , i.e. $(r\cos \theta ,r\sin \theta )$ , on the circle, where $\theta $ is a parameter.
We know, the equation of the tangent at $({{x}_{1}},{{y}_{1}})$ is given as $x{{x}_{1}}+y{{y}_{1}}={{r}^{2}}$ .
So, the equation of the tangent at $(r\cos \theta ,r\sin \theta )$ is given as $x.r\cos \theta +y.r\sin \theta ={{r}^{2}}$
$\Rightarrow x\cos \theta +y\sin \theta =r....(i)$
Now, we know, the slope of the line given by $ax+by+c=0$ is given as $m=-\dfrac{a}{b}$
So, the slope of tangent given by equation$(i)$ is given as $m=-\dfrac{\cos \theta }{\sin \theta }=-\cot \theta $
Now, we know the product of two perpendicular lines is equal to $-1$ .
Let ${{m}_{\bot }}$ be the slope of the line perpendicular to the tangent. So, $m\times {{m}_{\bot }}=-1$
$\Rightarrow -\cot \theta \times {{m}_{\bot }}=-1$
$\Rightarrow {{m}_{\bot }}=\dfrac{-1}{-\cot \theta }=\tan \theta $
So, the slope of the line perpendicular to the tangent at $(r\cos \theta ,r\sin \theta )$ is given as ${{m}_{\bot }}=\tan \theta $ .
Now, we know, the equation of a line with slope $m$ and passing through $({{x}_{1}},{{y}_{1}})$ is given as $(y-{{y}_{1}})=m(x-{{x}_{1}})$.
So, the equation of the line passing through $(r\cos \theta ,r\sin \theta )$ and having slope ${{m}_{\bot }}=\tan \theta $ is given as $y-r\sin \theta =\tan \theta (x-r\cos \theta )$ .
$\Rightarrow y-r\sin \theta =x\tan \theta -r\sin \theta $
$\Rightarrow y-x\tan \theta =0.....(ii)$
Now, there is no constant term in equation $(ii)$ . So, the line represented by equation $(ii)$ will always pass through the origin, which is the center of the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
Hence, any line perpendicular at the point of contact of a tangent to a circle passes through the center of the circle.
Note: While making substitutions, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

