
Prove that the lines joining the middle points of opposite sides of a quadrilateral and the line joining the middle points of its diagonals meet in a point and bisect one another.
Answer
535.5k+ views
Hint: - Here, we made a quadrilateral whose one diagonal is x axis. And then suppose the coordinate of the corner of the quadrilateral with respect to x axis and y axis. And then go through the bisector formula of coordinates.
Let ABCD be the quadrilateral such that diagonal AC is along x axis suppose the coordinates A, B, C and D be \[(0,0),({x_2},{y_2})({x_1},0)\]and \[({x_3},{y_3})\] respectively.
E and F are the mid points of sides AD and BC respectively, G and H are the midpoint of diagonals AC and BD. And the point of intersection of EF and GH is I.
Coordinates of E are \[\left( {\dfrac{{0 + {x_3}}}{2},\dfrac{{0 + {y_3}}}{2}} \right) = \left( {\dfrac{{{x_3}}}{2},\dfrac{{{y_3}}}{2}} \right)\]
Coordinates of Fare\[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{0 + {y_2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_2}}}{2}} \right)\]
Coordinates of midpoint of EF are \[\left( {\dfrac{{\dfrac{{{x_3}}}{2} + \dfrac{{{x_1} + {x_2}}}{2}}}{2},\dfrac{{\dfrac{{{y_3}}}{2} + \dfrac{{{y_2}}}{2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{4},\dfrac{{{y_2} + {y_3}}}{4}} \right)\]
G and H are the mid points of diagonal AC and BD respectively then
Coordinates of G are\[\left( {\dfrac{{0 + {x_1}}}{2},\dfrac{{0 + 0}}{2}} \right) = \left( {\dfrac{{{x_1}}}{2},0} \right)\]
Coordinates of H are\[\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)\]
Coordinates of midpoint of GH are \[\left( {\dfrac{{\dfrac{{{x_1}}}{2} + \dfrac{{{x_2} + {x_3}}}{2}}}{2},\dfrac{{\dfrac{{{y_2}}}{2} + \dfrac{{{y_2} + {y_3}}}{2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{4},\dfrac{{{y_2} + {y_3}}}{4}} \right)\]
As you can see, midpoints of both EF and GH are the same. So, EF and GH meet and bisect each other.
Hence, proved.
Note:-Whenever we face such types of questions first of all make the diagram by the statement given by the question, then use the section formula to find the midpoint of a line. If the two points have the same value then it must coincide.

Let ABCD be the quadrilateral such that diagonal AC is along x axis suppose the coordinates A, B, C and D be \[(0,0),({x_2},{y_2})({x_1},0)\]and \[({x_3},{y_3})\] respectively.
E and F are the mid points of sides AD and BC respectively, G and H are the midpoint of diagonals AC and BD. And the point of intersection of EF and GH is I.
Coordinates of E are \[\left( {\dfrac{{0 + {x_3}}}{2},\dfrac{{0 + {y_3}}}{2}} \right) = \left( {\dfrac{{{x_3}}}{2},\dfrac{{{y_3}}}{2}} \right)\]
Coordinates of Fare\[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{0 + {y_2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_2}}}{2}} \right)\]
Coordinates of midpoint of EF are \[\left( {\dfrac{{\dfrac{{{x_3}}}{2} + \dfrac{{{x_1} + {x_2}}}{2}}}{2},\dfrac{{\dfrac{{{y_3}}}{2} + \dfrac{{{y_2}}}{2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{4},\dfrac{{{y_2} + {y_3}}}{4}} \right)\]
G and H are the mid points of diagonal AC and BD respectively then
Coordinates of G are\[\left( {\dfrac{{0 + {x_1}}}{2},\dfrac{{0 + 0}}{2}} \right) = \left( {\dfrac{{{x_1}}}{2},0} \right)\]
Coordinates of H are\[\left( {\dfrac{{{x_2} + {x_3}}}{2},\dfrac{{{y_2} + {y_3}}}{2}} \right)\]
Coordinates of midpoint of GH are \[\left( {\dfrac{{\dfrac{{{x_1}}}{2} + \dfrac{{{x_2} + {x_3}}}{2}}}{2},\dfrac{{\dfrac{{{y_2}}}{2} + \dfrac{{{y_2} + {y_3}}}{2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{4},\dfrac{{{y_2} + {y_3}}}{4}} \right)\]
As you can see, midpoints of both EF and GH are the same. So, EF and GH meet and bisect each other.
Hence, proved.
Note:-Whenever we face such types of questions first of all make the diagram by the statement given by the question, then use the section formula to find the midpoint of a line. If the two points have the same value then it must coincide.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

The largest brackish water lake in India is A Wular class 9 biology CBSE
