
Prove that the external bisector of an angle of triangle divides the opposite side externally in the ratio to the sides containing the angle.
Answer
491.4k+ views
Hint: The given question is a named theorem called the angle bisector theorem. The angle bisector theorem is defined for internal angles and also external angles.
Here, we are asked to prove the external angle bisector theorem.
Let us consider $\Delta ABC$ where $AD$ is the external bisector. The angle bisector is nothing but a line or line segment which divides the angle into two equal parts.
Now, we need to prove that the external bisector of an angle of a triangle divides the opposite side externally in the ratio to the sides containing the angle.
Complete step-by-step solution:
From the given information, let $AD$ be the external bisector of $\Delta BAC$ which intersects $BC$ produced at $D$ .
To verify:
$\dfrac{{BD}}{{DC}} = \dfrac{{AB}}{{AC}}$
Now, draw $CE\parallel DA$ meeting $AB$ at $E$ .
Since $CE\parallel DA$ and $AC$ is a transversal, we get $\angle ECA = \angle CAD$..\[\left( 1 \right)\]
Where, $\angle ECA$ and $\angle CAD$ are alternate angles again, $CE$ is parallel to $DA$ and $BP$ is a transversal, so
$\angle CEA = \angle DAP$…..\[\left( 2 \right)\]
Where, $\angle CEA$ and $\angle DAP$ are corresponding angles,
Since $AD$ is the bisector of $\angle CAP$ ,
$\angle CAD = \angle DAP$ … \[\left( 3 \right)\]
We know that, the sides opposite to equal angles are equal, by using this statement and also from\[\left( 1 \right)\],\[\left( 2 \right)\] and \[\left( 3 \right)\]
We have
$\angle CEA = \angle ECA$
Also, $EC\parallel AD$ in $\angle BDA$, so we have
$\dfrac{{BD}}{{DC}} = \dfrac{{BA}}{{AE}}$ (By Thales theorem)
And we know, $\angle CEA = \angle ECA \Rightarrow AE=AC$
Substituting $AE = AC$ in the above equation, we get
$\dfrac{{BD}}{{DC}} = \dfrac{{BA}}{{AC}}$ which is the required result.
Hence the theorem is proved.
Note: Thales theorem is introduced by Thales which is also called basic proportionality theorem; and this theorem proved that the ratio of any two corresponding sides is always same for any two equiangular triangles.
If an internal angle bisector theorem is asked to prove, follow the same procedure as we did for the external angle bisector theorem.
Here, we are asked to prove the external angle bisector theorem.
Let us consider $\Delta ABC$ where $AD$ is the external bisector. The angle bisector is nothing but a line or line segment which divides the angle into two equal parts.
Now, we need to prove that the external bisector of an angle of a triangle divides the opposite side externally in the ratio to the sides containing the angle.
Complete step-by-step solution:
From the given information, let $AD$ be the external bisector of $\Delta BAC$ which intersects $BC$ produced at $D$ .
To verify:
$\dfrac{{BD}}{{DC}} = \dfrac{{AB}}{{AC}}$
Now, draw $CE\parallel DA$ meeting $AB$ at $E$ .
Since $CE\parallel DA$ and $AC$ is a transversal, we get $\angle ECA = \angle CAD$..\[\left( 1 \right)\]
Where, $\angle ECA$ and $\angle CAD$ are alternate angles again, $CE$ is parallel to $DA$ and $BP$ is a transversal, so
$\angle CEA = \angle DAP$…..\[\left( 2 \right)\]
Where, $\angle CEA$ and $\angle DAP$ are corresponding angles,
Since $AD$ is the bisector of $\angle CAP$ ,
$\angle CAD = \angle DAP$ … \[\left( 3 \right)\]
We know that, the sides opposite to equal angles are equal, by using this statement and also from\[\left( 1 \right)\],\[\left( 2 \right)\] and \[\left( 3 \right)\]
We have
$\angle CEA = \angle ECA$
Also, $EC\parallel AD$ in $\angle BDA$, so we have
$\dfrac{{BD}}{{DC}} = \dfrac{{BA}}{{AE}}$ (By Thales theorem)
And we know, $\angle CEA = \angle ECA \Rightarrow AE=AC$
Substituting $AE = AC$ in the above equation, we get
$\dfrac{{BD}}{{DC}} = \dfrac{{BA}}{{AC}}$ which is the required result.
Hence the theorem is proved.
Note: Thales theorem is introduced by Thales which is also called basic proportionality theorem; and this theorem proved that the ratio of any two corresponding sides is always same for any two equiangular triangles.
If an internal angle bisector theorem is asked to prove, follow the same procedure as we did for the external angle bisector theorem.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

