Answer
Verified
448.8k+ views
Hint: Here to prove this question we must know property which is mentioned below: -
$\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
We know the value of $\tan {45^ \circ } = 1$, so here in this question we will use this value to prove our question.
$\tan {45^ \circ } = 1$
We can write $\tan {45^ \circ }$ as $\tan ({36^ \circ } + {9^ \circ })$ so that property $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ can be applied.
$ \Rightarrow \tan ({36^ \circ } + {9^ \circ }) = \dfrac{{\tan {{36}^ \circ } + \tan {9^ \circ }}}{{1 - \tan {{36}^ \circ }\tan {9^ \circ }}} = 1$
$ \Rightarrow \dfrac{{\tan {{36}^ \circ } + \tan {9^ \circ }}}{{1 - \tan {{36}^ \circ }\tan {9^ \circ }}} = 1$ (Now in next step we will cross multiply)
\[ \Rightarrow \tan {36^ \circ } + \tan {9^ \circ } = 1 - \tan {36^ \circ }\tan {9^ \circ }\]
Rearranging the terms and taking trigonometric functions in one side.
\[\therefore \tan {36^ \circ } + \tan {9^ \circ } + \tan {36^ \circ }\tan {9^ \circ } = 1\]
Hence it is proved that $\tan {36^ \circ } + \tan {9^ \circ } + \tan {36^ \circ }\tan {9^ \circ } = 1$
Additional Information: Trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side length. Most widely used trigonometric functions are sine, cosine and tangent. The angles of sine, cosine and tangent are the primary classification of functions of trigonometry. And the functions which are cotangent, secant and cosecant can be derived from the primary functions. Behaviour of all these functions in four quadrants is as follows: -
First quadrant = All trigonometric functions are positive (sine, cosine, tan, sec, cosec, cot)
Second quadrant=Positive (sine, cosec) Negative (cosine, tan, sec, cot)
Third quadrant= Positive (tan, cot) Negative (sine, cosine, sec, cosec)
Fourth quadrant= Positive (cosine, sec) Negative (sine, tan, cot, cosec)
Note: Students may likely to make one common mistake in this question is that they will try to think the direct value of given trigonometric functions which is a very wrong way to approach because one cannot memorise too many values rather some specific values should be remembered to solve these types of questions. Some of the values are mentioned below: -
$\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
$\tan {60^ \circ } = \sqrt 3 $
$\tan {45^ \circ } = 1$
\[\tan {90^ \circ }\]= infinity
$\tan {180^ \circ } = 0$
$\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
We know the value of $\tan {45^ \circ } = 1$, so here in this question we will use this value to prove our question.
$\tan {45^ \circ } = 1$
We can write $\tan {45^ \circ }$ as $\tan ({36^ \circ } + {9^ \circ })$ so that property $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ can be applied.
$ \Rightarrow \tan ({36^ \circ } + {9^ \circ }) = \dfrac{{\tan {{36}^ \circ } + \tan {9^ \circ }}}{{1 - \tan {{36}^ \circ }\tan {9^ \circ }}} = 1$
$ \Rightarrow \dfrac{{\tan {{36}^ \circ } + \tan {9^ \circ }}}{{1 - \tan {{36}^ \circ }\tan {9^ \circ }}} = 1$ (Now in next step we will cross multiply)
\[ \Rightarrow \tan {36^ \circ } + \tan {9^ \circ } = 1 - \tan {36^ \circ }\tan {9^ \circ }\]
Rearranging the terms and taking trigonometric functions in one side.
\[\therefore \tan {36^ \circ } + \tan {9^ \circ } + \tan {36^ \circ }\tan {9^ \circ } = 1\]
Hence it is proved that $\tan {36^ \circ } + \tan {9^ \circ } + \tan {36^ \circ }\tan {9^ \circ } = 1$
Additional Information: Trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side length. Most widely used trigonometric functions are sine, cosine and tangent. The angles of sine, cosine and tangent are the primary classification of functions of trigonometry. And the functions which are cotangent, secant and cosecant can be derived from the primary functions. Behaviour of all these functions in four quadrants is as follows: -
First quadrant = All trigonometric functions are positive (sine, cosine, tan, sec, cosec, cot)
Second quadrant=Positive (sine, cosec) Negative (cosine, tan, sec, cot)
Third quadrant= Positive (tan, cot) Negative (sine, cosine, sec, cosec)
Fourth quadrant= Positive (cosine, sec) Negative (sine, tan, cot, cosec)
Note: Students may likely to make one common mistake in this question is that they will try to think the direct value of given trigonometric functions which is a very wrong way to approach because one cannot memorise too many values rather some specific values should be remembered to solve these types of questions. Some of the values are mentioned below: -
$\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
$\tan {60^ \circ } = \sqrt 3 $
$\tan {45^ \circ } = 1$
\[\tan {90^ \circ }\]= infinity
$\tan {180^ \circ } = 0$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell