Answer
Verified
424.8k+ views
Hint: Here, using contradiction method we will assume contradictory to the requirement and then will prove accordingly as per requirement. So, here we will assume that square root $ 15 $ is rational.
Complete step-by-step solution:
A rational number is the number which can be expressed as the ratio of two numbers or which can be expressed as the p/q form or as the quotient or the fraction with non-zero denominator whereas, the numbers which are not represented as the rational are known as the irrational number.
Convert the given word statement in the form of mathematical expression. Also, we will assume that square root $ 15 $ is rational.
Let $ \sqrt {15} $ is rational.
$ \therefore \sqrt {15} = \dfrac{a}{b} $ [Here “a” and “b” are not the common factor.]
Take square on both the side of the equation.
\[\therefore {\left( {\sqrt {15} } \right)^2} = {\left( {\dfrac{a}{b}} \right)^2}\]
Square and square root cancel each other on the left hand side of the equation.
\[\therefore 15 = \left( {\dfrac{{{a^2}}}{{{b^2}}}} \right)\]
Do cross multiplication, where the denominator of one side is multiplied with the numerator of the opposite side.
$ \Rightarrow 15{b^2} = {a^2} $
The left hand side of the equation has factors of $ 3 $ and $ 5. $ So $ {a^2} $ must be divisible by $ 3 $ and $ 5. $ Also, by the unique prime factorization theorem, “a” must be also divisible by $ 3 $ and $ 5. $
So, assume $ a = 3.5.k $ where $ k \in N $
$ \Rightarrow 15{b^2} = {a^2} = {(15k)^2} = 15.(15{k^2}) $
Divide both the ends of the equation with $ 15 $ to find:
$ \Rightarrow {b^2} = (15{k^2}) $
Make constant term the subject-
$ \Rightarrow \dfrac{{{b^2}}}{{{k^2}}} = 15 $
Take the square root on both the sides.
$ \Rightarrow \sqrt {\dfrac{{{b^2}}}{{{k^2}}}} = \sqrt {15} $
Square and square root cancel each other on the left hand side of the equation.
$ \Rightarrow \dfrac{b}{k} = \sqrt {15} $
The above expression is in the form of an irrational number.
So, our assumption is not correct and hence $ \sqrt {15} $ is the irrational number.
Note: In irrational numbers are in the decimal form and are the non-repeating and non-terminating numbers. Remember zero is the rational number. Also, refer to other terminologies for natural numbers, whole numbers and integers, fractions and know the difference between them.
Complete step-by-step solution:
A rational number is the number which can be expressed as the ratio of two numbers or which can be expressed as the p/q form or as the quotient or the fraction with non-zero denominator whereas, the numbers which are not represented as the rational are known as the irrational number.
Convert the given word statement in the form of mathematical expression. Also, we will assume that square root $ 15 $ is rational.
Let $ \sqrt {15} $ is rational.
$ \therefore \sqrt {15} = \dfrac{a}{b} $ [Here “a” and “b” are not the common factor.]
Take square on both the side of the equation.
\[\therefore {\left( {\sqrt {15} } \right)^2} = {\left( {\dfrac{a}{b}} \right)^2}\]
Square and square root cancel each other on the left hand side of the equation.
\[\therefore 15 = \left( {\dfrac{{{a^2}}}{{{b^2}}}} \right)\]
Do cross multiplication, where the denominator of one side is multiplied with the numerator of the opposite side.
$ \Rightarrow 15{b^2} = {a^2} $
The left hand side of the equation has factors of $ 3 $ and $ 5. $ So $ {a^2} $ must be divisible by $ 3 $ and $ 5. $ Also, by the unique prime factorization theorem, “a” must be also divisible by $ 3 $ and $ 5. $
So, assume $ a = 3.5.k $ where $ k \in N $
$ \Rightarrow 15{b^2} = {a^2} = {(15k)^2} = 15.(15{k^2}) $
Divide both the ends of the equation with $ 15 $ to find:
$ \Rightarrow {b^2} = (15{k^2}) $
Make constant term the subject-
$ \Rightarrow \dfrac{{{b^2}}}{{{k^2}}} = 15 $
Take the square root on both the sides.
$ \Rightarrow \sqrt {\dfrac{{{b^2}}}{{{k^2}}}} = \sqrt {15} $
Square and square root cancel each other on the left hand side of the equation.
$ \Rightarrow \dfrac{b}{k} = \sqrt {15} $
The above expression is in the form of an irrational number.
So, our assumption is not correct and hence $ \sqrt {15} $ is the irrational number.
Note: In irrational numbers are in the decimal form and are the non-repeating and non-terminating numbers. Remember zero is the rational number. Also, refer to other terminologies for natural numbers, whole numbers and integers, fractions and know the difference between them.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE