Answer
Verified
494.7k+ views
Hint - Consider LHS part and start simplification and after that use trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $.
We have to prove that $\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} = 2cosec\theta $
Taking LHS
$\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} $
Now let’s take the LCM to simplify above we have
$\dfrac{{{{\left( {\sqrt {1 + \cos \theta } } \right)}^2} + {{\left( {\sqrt {1 - \cos \theta } } \right)}^2}}}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }}$
Now using ${\left( {\sqrt a } \right)^2} = a$ we have
$
\dfrac{{1 + \cos \theta + 1 - \cos \theta }}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\
\Rightarrow \dfrac{2}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\
\Rightarrow \dfrac{2}{{\sqrt {\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)} }} \\
$
Now in denominator part we have $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
So we get
$\dfrac{2}{{\sqrt {1 - {{\cos }^2}\theta } }}$
Using the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $
We get
$
\dfrac{2}{{\sqrt {{{\sin }^2}\theta } }} \\
\Rightarrow \dfrac{2}{{\sin \theta }} \\
$
Now we know that $\sin \theta = \dfrac{1}{{cosec\theta }}{\text{ or cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$
So the above get reduced to
$2cosec\theta $ =RHS
Hence LHS=RHS
Thus proved
Note – Whenever we come across such problems the basics that we need to follow is that we always start from one side of the given equation and simplify that part using various trigonometric identities . A good grasp over the trigonometric identities is appreciated to reach to the proof.
We have to prove that $\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} = 2cosec\theta $
Taking LHS
$\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} $
Now let’s take the LCM to simplify above we have
$\dfrac{{{{\left( {\sqrt {1 + \cos \theta } } \right)}^2} + {{\left( {\sqrt {1 - \cos \theta } } \right)}^2}}}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }}$
Now using ${\left( {\sqrt a } \right)^2} = a$ we have
$
\dfrac{{1 + \cos \theta + 1 - \cos \theta }}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\
\Rightarrow \dfrac{2}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\
\Rightarrow \dfrac{2}{{\sqrt {\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)} }} \\
$
Now in denominator part we have $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
So we get
$\dfrac{2}{{\sqrt {1 - {{\cos }^2}\theta } }}$
Using the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $
We get
$
\dfrac{2}{{\sqrt {{{\sin }^2}\theta } }} \\
\Rightarrow \dfrac{2}{{\sin \theta }} \\
$
Now we know that $\sin \theta = \dfrac{1}{{cosec\theta }}{\text{ or cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$
So the above get reduced to
$2cosec\theta $ =RHS
Hence LHS=RHS
Thus proved
Note – Whenever we come across such problems the basics that we need to follow is that we always start from one side of the given equation and simplify that part using various trigonometric identities . A good grasp over the trigonometric identities is appreciated to reach to the proof.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE