
Prove that $\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} = 2cosec\theta $
Answer
610.2k+ views
Hint - Consider LHS part and start simplification and after that use trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $.
We have to prove that $\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} = 2cosec\theta $
Taking LHS
$\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} $
Now let’s take the LCM to simplify above we have
$\dfrac{{{{\left( {\sqrt {1 + \cos \theta } } \right)}^2} + {{\left( {\sqrt {1 - \cos \theta } } \right)}^2}}}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }}$
Now using ${\left( {\sqrt a } \right)^2} = a$ we have
$
\dfrac{{1 + \cos \theta + 1 - \cos \theta }}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\
\Rightarrow \dfrac{2}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\
\Rightarrow \dfrac{2}{{\sqrt {\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)} }} \\
$
Now in denominator part we have $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
So we get
$\dfrac{2}{{\sqrt {1 - {{\cos }^2}\theta } }}$
Using the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $
We get
$
\dfrac{2}{{\sqrt {{{\sin }^2}\theta } }} \\
\Rightarrow \dfrac{2}{{\sin \theta }} \\
$
Now we know that $\sin \theta = \dfrac{1}{{cosec\theta }}{\text{ or cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$
So the above get reduced to
$2cosec\theta $ =RHS
Hence LHS=RHS
Thus proved
Note – Whenever we come across such problems the basics that we need to follow is that we always start from one side of the given equation and simplify that part using various trigonometric identities . A good grasp over the trigonometric identities is appreciated to reach to the proof.
We have to prove that $\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} = 2cosec\theta $
Taking LHS
$\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} $
Now let’s take the LCM to simplify above we have
$\dfrac{{{{\left( {\sqrt {1 + \cos \theta } } \right)}^2} + {{\left( {\sqrt {1 - \cos \theta } } \right)}^2}}}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }}$
Now using ${\left( {\sqrt a } \right)^2} = a$ we have
$
\dfrac{{1 + \cos \theta + 1 - \cos \theta }}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\
\Rightarrow \dfrac{2}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\
\Rightarrow \dfrac{2}{{\sqrt {\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)} }} \\
$
Now in denominator part we have $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
So we get
$\dfrac{2}{{\sqrt {1 - {{\cos }^2}\theta } }}$
Using the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $
We get
$
\dfrac{2}{{\sqrt {{{\sin }^2}\theta } }} \\
\Rightarrow \dfrac{2}{{\sin \theta }} \\
$
Now we know that $\sin \theta = \dfrac{1}{{cosec\theta }}{\text{ or cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$
So the above get reduced to
$2cosec\theta $ =RHS
Hence LHS=RHS
Thus proved
Note – Whenever we come across such problems the basics that we need to follow is that we always start from one side of the given equation and simplify that part using various trigonometric identities . A good grasp over the trigonometric identities is appreciated to reach to the proof.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

