# Prove that $\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} = 2cosec\theta $

Last updated date: 30th Mar 2023

•

Total views: 310.2k

•

Views today: 7.86k

Answer

Verified

310.2k+ views

Hint - Consider LHS part and start simplification and after that use trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $.

We have to prove that $\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} = 2cosec\theta $

Taking LHS

$\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} $

Now let’s take the LCM to simplify above we have

$\dfrac{{{{\left( {\sqrt {1 + \cos \theta } } \right)}^2} + {{\left( {\sqrt {1 - \cos \theta } } \right)}^2}}}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }}$

Now using ${\left( {\sqrt a } \right)^2} = a$ we have

$

\dfrac{{1 + \cos \theta + 1 - \cos \theta }}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\

\Rightarrow \dfrac{2}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\

\Rightarrow \dfrac{2}{{\sqrt {\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)} }} \\

$

Now in denominator part we have $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$

So we get

$\dfrac{2}{{\sqrt {1 - {{\cos }^2}\theta } }}$

Using the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $

We get

$

\dfrac{2}{{\sqrt {{{\sin }^2}\theta } }} \\

\Rightarrow \dfrac{2}{{\sin \theta }} \\

$

Now we know that $\sin \theta = \dfrac{1}{{cosec\theta }}{\text{ or cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$

So the above get reduced to

$2cosec\theta $ =RHS

Hence LHS=RHS

Thus proved

Note – Whenever we come across such problems the basics that we need to follow is that we always start from one side of the given equation and simplify that part using various trigonometric identities . A good grasp over the trigonometric identities is appreciated to reach to the proof.

We have to prove that $\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} = 2cosec\theta $

Taking LHS

$\sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} + \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} $

Now let’s take the LCM to simplify above we have

$\dfrac{{{{\left( {\sqrt {1 + \cos \theta } } \right)}^2} + {{\left( {\sqrt {1 - \cos \theta } } \right)}^2}}}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }}$

Now using ${\left( {\sqrt a } \right)^2} = a$ we have

$

\dfrac{{1 + \cos \theta + 1 - \cos \theta }}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\

\Rightarrow \dfrac{2}{{\sqrt {1 + \cos \theta } \sqrt {1 - \cos \theta } }} \\

\Rightarrow \dfrac{2}{{\sqrt {\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)} }} \\

$

Now in denominator part we have $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$

So we get

$\dfrac{2}{{\sqrt {1 - {{\cos }^2}\theta } }}$

Using the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $

We get

$

\dfrac{2}{{\sqrt {{{\sin }^2}\theta } }} \\

\Rightarrow \dfrac{2}{{\sin \theta }} \\

$

Now we know that $\sin \theta = \dfrac{1}{{cosec\theta }}{\text{ or cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$

So the above get reduced to

$2cosec\theta $ =RHS

Hence LHS=RHS

Thus proved

Note – Whenever we come across such problems the basics that we need to follow is that we always start from one side of the given equation and simplify that part using various trigonometric identities . A good grasp over the trigonometric identities is appreciated to reach to the proof.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE