
Prove that \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} = 2\] .
Answer
564.6k+ views
Hint: In this type of problem, you take one side and solve it and get another side. Use a different conversion formula from the trigonometric identities in order to replace the different angles into one and finally cancel out the terms. Use the below formula to get the answer.
\[\sec \theta = \dfrac{1}{{\cos \theta }}\] and \[{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}\] .
\[\cos \left( {90 - \theta } \right) = \sin \theta ,\sin \left( {90 - \theta } \right) = \cos \theta \]
Complete step-by-step answer:
Taking LHS
Given \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0}\]
We know that,
\[\sec \theta = \dfrac{1}{{\cos \theta }}\] and \[{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}\] .
Now given equation becomes,
\[
\Rightarrow \sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} \\
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\cos {{42}^0}}} + \dfrac{{\cos {{48}^0}}}{{\sin {{42}^0}}} \\
\]
We have,
\[\cos \left( {90 - \theta } \right) = \sin \theta ,\sin \left( {90 - \theta } \right) = \cos \theta \]
So let us use the formula for the derivation.
\[
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\cos {{\left( {90 - 48} \right)}^0}}} + \dfrac{{\cos {{48}^0}}}{{\sin {{\left( {90 - 48} \right)}^0}}} \\
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\sin {{48}^0}}} + \dfrac{{\cos {{48}^0}}}{{\cos {{48}^0}}} \\
\Rightarrow 1 + 1 \\
\Rightarrow 2 \\
\]
Hence, proved \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} = 2\] .
Note: In this problem, you take LHS and solve it by using trigonometric formulas and prove that LHS is equal to the RHS. Students must remember different conversion formulas such as conversion from sine to cosine and other using the angle at 90 degree to get the answer. Students must not try to find the values and solve it as it will be very lengthy.
\[\sec \theta = \dfrac{1}{{\cos \theta }}\] and \[{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}\] .
\[\cos \left( {90 - \theta } \right) = \sin \theta ,\sin \left( {90 - \theta } \right) = \cos \theta \]
Complete step-by-step answer:
Taking LHS
Given \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0}\]
We know that,
\[\sec \theta = \dfrac{1}{{\cos \theta }}\] and \[{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}\] .
Now given equation becomes,
\[
\Rightarrow \sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} \\
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\cos {{42}^0}}} + \dfrac{{\cos {{48}^0}}}{{\sin {{42}^0}}} \\
\]
We have,
\[\cos \left( {90 - \theta } \right) = \sin \theta ,\sin \left( {90 - \theta } \right) = \cos \theta \]
So let us use the formula for the derivation.
\[
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\cos {{\left( {90 - 48} \right)}^0}}} + \dfrac{{\cos {{48}^0}}}{{\sin {{\left( {90 - 48} \right)}^0}}} \\
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\sin {{48}^0}}} + \dfrac{{\cos {{48}^0}}}{{\cos {{48}^0}}} \\
\Rightarrow 1 + 1 \\
\Rightarrow 2 \\
\]
Hence, proved \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} = 2\] .
Note: In this problem, you take LHS and solve it by using trigonometric formulas and prove that LHS is equal to the RHS. Students must remember different conversion formulas such as conversion from sine to cosine and other using the angle at 90 degree to get the answer. Students must not try to find the values and solve it as it will be very lengthy.
Recently Updated Pages
Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

