Answer
Verified
421.2k+ views
Hint: Here in this question we should know the definition of collinear points and how we can prove the points are collinear.
Definition of collinear points: - Three or more points are said to be collinear if they lie on a single straight line.
We will use distance formula between the two points ${x_1},{y_1}$ and ${x_2},{y_2}$ that is mentioned below: -
$d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ d= distance between two points.
Complete step-by-step solution:
Let the three given points be named as A (1, 1), B (-2, 7) and C (3,-3). To prove these three points are collinear we have to prove that they lie on a single straight line. For this we will use distance formula.
$d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
And to prove they are collinear we have to prove one of the three conditions mentioned below: -
AB+BC=AC
BC+AC=AB
AB+AC=BC
Finding length of line segments AB, BC and AC
Points for AB are A (1, 1) and B (-2, 7)
$ \Rightarrow AB = \sqrt {{{[ - 2 - 1]}^2} + {{[7 - 1]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow AB = \sqrt {{{[ - 3]}^2} + {{[6]}^2}} $
$ \Rightarrow AB = \sqrt {9 + 36} $
\[ \Rightarrow AB = \sqrt {45} \]
$\therefore AB = 6.70$
Points for BC are B (-2, 7) and C (3, -3)
$ \Rightarrow BC = \sqrt {{{[3 + 2]}^2} + {{[ - 3 - 7]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow BC = \sqrt {{{[5]}^2} + {{[10]}^2}} $
$ \Rightarrow BC = \sqrt {25 + 100} $
$ \Rightarrow BC = \sqrt {125} $ (Finding square root)
$\therefore BC = 11.18$
Points for AC are A (1, 1) and C (3, -3)
$ \Rightarrow AC = \sqrt {{{[3 - 1]}^2} + {{[ - 3 - 1]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow AC = \sqrt {{{[2]}^2} + {{[ - 4]}^2}} $
$ \Rightarrow AC = \sqrt {4 + 16} $
$ \Rightarrow AC = \sqrt {20} $ (Finding Square root)
$\therefore AC = 4.47$
Checking conditions: -
AB+BC=AC
$ \Rightarrow 6.70 + 11.18 \ne 4.47$ First condition is not satisfied.
BC+AC=AB
$ \Rightarrow 11.18 + 4.47 \ne 6.70$ Second condition is not satisfied.
AB+AC=BC
$ \Rightarrow 6.70 + 4.47 = 11.18$ Third condition is satisfied.
Therefore one condition for collinearity is satisfied so the given points (1, 1), (-2, 7) and (3,-3) are collinear.
Note: Students must apply distance formula carefully as the common mistake which is done by most of the students is that they get confused between subtraction sign instead of addition sign in distance formula.
Definition of collinear points: - Three or more points are said to be collinear if they lie on a single straight line.
We will use distance formula between the two points ${x_1},{y_1}$ and ${x_2},{y_2}$ that is mentioned below: -
$d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ d= distance between two points.
Complete step-by-step solution:
Let the three given points be named as A (1, 1), B (-2, 7) and C (3,-3). To prove these three points are collinear we have to prove that they lie on a single straight line. For this we will use distance formula.
$d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
And to prove they are collinear we have to prove one of the three conditions mentioned below: -
AB+BC=AC
BC+AC=AB
AB+AC=BC
Finding length of line segments AB, BC and AC
Points for AB are A (1, 1) and B (-2, 7)
$ \Rightarrow AB = \sqrt {{{[ - 2 - 1]}^2} + {{[7 - 1]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow AB = \sqrt {{{[ - 3]}^2} + {{[6]}^2}} $
$ \Rightarrow AB = \sqrt {9 + 36} $
\[ \Rightarrow AB = \sqrt {45} \]
$\therefore AB = 6.70$
Points for BC are B (-2, 7) and C (3, -3)
$ \Rightarrow BC = \sqrt {{{[3 + 2]}^2} + {{[ - 3 - 7]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow BC = \sqrt {{{[5]}^2} + {{[10]}^2}} $
$ \Rightarrow BC = \sqrt {25 + 100} $
$ \Rightarrow BC = \sqrt {125} $ (Finding square root)
$\therefore BC = 11.18$
Points for AC are A (1, 1) and C (3, -3)
$ \Rightarrow AC = \sqrt {{{[3 - 1]}^2} + {{[ - 3 - 1]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow AC = \sqrt {{{[2]}^2} + {{[ - 4]}^2}} $
$ \Rightarrow AC = \sqrt {4 + 16} $
$ \Rightarrow AC = \sqrt {20} $ (Finding Square root)
$\therefore AC = 4.47$
Checking conditions: -
AB+BC=AC
$ \Rightarrow 6.70 + 11.18 \ne 4.47$ First condition is not satisfied.
BC+AC=AB
$ \Rightarrow 11.18 + 4.47 \ne 6.70$ Second condition is not satisfied.
AB+AC=BC
$ \Rightarrow 6.70 + 4.47 = 11.18$ Third condition is satisfied.
Therefore one condition for collinearity is satisfied so the given points (1, 1), (-2, 7) and (3,-3) are collinear.
Note: Students must apply distance formula carefully as the common mistake which is done by most of the students is that they get confused between subtraction sign instead of addition sign in distance formula.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell