
Prove that \[{}^nPr = {}^{n - 1}Pr + r.{\text{ }}{}^{\left( {n - 1} \right)}Pr - 1\].
Answer
578.1k+ views
Hint: Here we will first consider the RHS and then prove it equal to LHS by using the following formula and simple arithmetic operations:
\[{}^nPr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Complete step-by-step answer:
Let us consider the right hand side:
\[RHS = {}^{n - 1}Pr + r.{\text{ }}{}^{\left( {n - 1} \right)}Pr - 1\]
Now applying the following formula separately for each term we get:-
The formula is:
\[{}^nPr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Applying this formula we get:-
\[RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - \left( {r - 1} \right)} \right)!}}\]
Now solving it further we get:-
\[
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r + 1} \right)!}} \\
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)!}} \\
\]
As we know that:
\[\left( {n - r} \right)! = \left( {n - r} \right)\left( {n - 1 - r} \right)!\]
Hence substituting the value we get:-
\[RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)\left( {n - r - 1} \right)!}}\]
Now taking \[\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\] common we get:-
\[RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {1 + r.\dfrac{1}{{n - r}}} \right]\]
Now taking the LCM and solving it further we get:-
\[
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {\dfrac{{1\left( {n - r} \right) + r\left( 1 \right)}}{{n - r}}} \right] \\
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {\dfrac{{n - r + r}}{{n - r}}} \right] \\
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {\dfrac{n}{{n - r}}} \right] \\
\]
Now we know that:-
\[
n! = n\left( {n - 1} \right)! \\
\left( {n - r} \right)! = \left( {n - r} \right)\left( {n - 1 - r} \right)! \\
\]
Hence substituting the values we get:-
\[RHS = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Also, we know that:
\[{}^nPr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Therefore,
\[
RHS = {}^nPr \\
{\text{ = }}LHS \\
\]
Therefore,
\[RHS{\text{ = }}LHS\]
Hence proved.
Note: Students should proceed from Right hand side in such questions as it is much easier to compress two or more terms into a single term rather than expanding a single term into two or more terms.
The formula of permutation should be used with correct values of n and r.
\[{}^nPr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Complete step-by-step answer:
Let us consider the right hand side:
\[RHS = {}^{n - 1}Pr + r.{\text{ }}{}^{\left( {n - 1} \right)}Pr - 1\]
Now applying the following formula separately for each term we get:-
The formula is:
\[{}^nPr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Applying this formula we get:-
\[RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - \left( {r - 1} \right)} \right)!}}\]
Now solving it further we get:-
\[
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r + 1} \right)!}} \\
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)!}} \\
\]
As we know that:
\[\left( {n - r} \right)! = \left( {n - r} \right)\left( {n - 1 - r} \right)!\]
Hence substituting the value we get:-
\[RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)\left( {n - r - 1} \right)!}}\]
Now taking \[\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\] common we get:-
\[RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {1 + r.\dfrac{1}{{n - r}}} \right]\]
Now taking the LCM and solving it further we get:-
\[
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {\dfrac{{1\left( {n - r} \right) + r\left( 1 \right)}}{{n - r}}} \right] \\
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {\dfrac{{n - r + r}}{{n - r}}} \right] \\
RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {\dfrac{n}{{n - r}}} \right] \\
\]
Now we know that:-
\[
n! = n\left( {n - 1} \right)! \\
\left( {n - r} \right)! = \left( {n - r} \right)\left( {n - 1 - r} \right)! \\
\]
Hence substituting the values we get:-
\[RHS = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Also, we know that:
\[{}^nPr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Therefore,
\[
RHS = {}^nPr \\
{\text{ = }}LHS \\
\]
Therefore,
\[RHS{\text{ = }}LHS\]
Hence proved.
Note: Students should proceed from Right hand side in such questions as it is much easier to compress two or more terms into a single term rather than expanding a single term into two or more terms.
The formula of permutation should be used with correct values of n and r.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

