
Prove that \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}={{\left( 1+\sec A\operatorname{cosec}A \right)}^{2}}\].
Answer
621.6k+ views
Hint: Transform the whole equation in terms of \[\sin \theta \] and \[\cos \theta \] and then convert into desired form.
We have to prove that \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}={{\left( 1+\sec A\operatorname{cosec}A \right)}^{2}}....\left( i \right)\]
Taking \[LHS\] of equation \[\left( i \right)\], we get
\[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]
Therefore, \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
\[={{\sin }^{2}}A+{{\sec }^{2}}A+2\sin A\sec A+{{\cos }^{2}}A+{{\operatorname{cosec}}^{2}}A+2\cos A\operatorname{cosec}A\]
Rearranging the equation, we get
\[\Rightarrow \left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A....\left( ii \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
Putting this value in equation \[\left( ii \right)\].
We get \[1+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A...\left( iii \right)\]
We know that \[\sec A=\dfrac{1}{\cos A}\] and \[\operatorname{cosec}A=\dfrac{1}{\sin A}\]
We will put the values of \[\sec A\] and \[\operatorname{cosec}A\] in equation \[\left( iii \right)\].
We get, \[1+2\left( \dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A}+\dfrac{1}{{{\cos }^{2}}A} \right)\]
\[=1+2\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\sin A\cos A} \right)+\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\].
Hence we get,
\[1+2\left( \dfrac{1}{\sin A\cos A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know, \[\dfrac{1}{\sin A}=\operatorname{cosec}A\] and \[\dfrac{1}{\cos A}=\sec A\]
Hence, we get \[1+2\operatorname{cosec}A\sec A+{{\operatorname{cosec}}^{2}}A{{\sec }^{2}}A\]
We can write it as
\[{{\left( 1 \right)}^{2}}+{{\left( \operatorname{cosec}A\sec A \right)}^{2}}+2\left( \operatorname{cosec}A\sec A \right).1\]
We know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
By considering \[a=1\] and \[\operatorname{cosec}A\sec A=B\]
We finally get \[LHS={{\left( 1+\operatorname{cosec}A\sec A \right)}^{2}}\] which is equal to \[\text{RHS}\].
Hence Proved.
Note: By looking the terms of \[\operatorname{cosec}A\] and \[secA\] in \[\text{RHS}\], students convert \[\sin A\] and \[\cos A\] into \[\dfrac{1}{\operatorname{cosec}A}\] and \[\dfrac{1}{secA}\] respectively in first step only, but that creates confusion and does not give the desired results.
We have to prove that \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}={{\left( 1+\sec A\operatorname{cosec}A \right)}^{2}}....\left( i \right)\]
Taking \[LHS\] of equation \[\left( i \right)\], we get
\[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]
Therefore, \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
\[={{\sin }^{2}}A+{{\sec }^{2}}A+2\sin A\sec A+{{\cos }^{2}}A+{{\operatorname{cosec}}^{2}}A+2\cos A\operatorname{cosec}A\]
Rearranging the equation, we get
\[\Rightarrow \left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A....\left( ii \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
Putting this value in equation \[\left( ii \right)\].
We get \[1+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A...\left( iii \right)\]
We know that \[\sec A=\dfrac{1}{\cos A}\] and \[\operatorname{cosec}A=\dfrac{1}{\sin A}\]
We will put the values of \[\sec A\] and \[\operatorname{cosec}A\] in equation \[\left( iii \right)\].
We get, \[1+2\left( \dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A}+\dfrac{1}{{{\cos }^{2}}A} \right)\]
\[=1+2\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\sin A\cos A} \right)+\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\].
Hence we get,
\[1+2\left( \dfrac{1}{\sin A\cos A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know, \[\dfrac{1}{\sin A}=\operatorname{cosec}A\] and \[\dfrac{1}{\cos A}=\sec A\]
Hence, we get \[1+2\operatorname{cosec}A\sec A+{{\operatorname{cosec}}^{2}}A{{\sec }^{2}}A\]
We can write it as
\[{{\left( 1 \right)}^{2}}+{{\left( \operatorname{cosec}A\sec A \right)}^{2}}+2\left( \operatorname{cosec}A\sec A \right).1\]
We know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
By considering \[a=1\] and \[\operatorname{cosec}A\sec A=B\]
We finally get \[LHS={{\left( 1+\operatorname{cosec}A\sec A \right)}^{2}}\] which is equal to \[\text{RHS}\].
Hence Proved.
Note: By looking the terms of \[\operatorname{cosec}A\] and \[secA\] in \[\text{RHS}\], students convert \[\sin A\] and \[\cos A\] into \[\dfrac{1}{\operatorname{cosec}A}\] and \[\dfrac{1}{secA}\] respectively in first step only, but that creates confusion and does not give the desired results.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

