
Prove that \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}={{\left( 1+\sec A\operatorname{cosec}A \right)}^{2}}\].
Answer
621.6k+ views
Hint: Transform the whole equation in terms of \[\sin \theta \] and \[\cos \theta \] and then convert into desired form.
We have to prove that \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}={{\left( 1+\sec A\operatorname{cosec}A \right)}^{2}}....\left( i \right)\]
Taking \[LHS\] of equation \[\left( i \right)\], we get
\[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]
Therefore, \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
\[={{\sin }^{2}}A+{{\sec }^{2}}A+2\sin A\sec A+{{\cos }^{2}}A+{{\operatorname{cosec}}^{2}}A+2\cos A\operatorname{cosec}A\]
Rearranging the equation, we get
\[\Rightarrow \left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A....\left( ii \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
Putting this value in equation \[\left( ii \right)\].
We get \[1+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A...\left( iii \right)\]
We know that \[\sec A=\dfrac{1}{\cos A}\] and \[\operatorname{cosec}A=\dfrac{1}{\sin A}\]
We will put the values of \[\sec A\] and \[\operatorname{cosec}A\] in equation \[\left( iii \right)\].
We get, \[1+2\left( \dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A}+\dfrac{1}{{{\cos }^{2}}A} \right)\]
\[=1+2\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\sin A\cos A} \right)+\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\].
Hence we get,
\[1+2\left( \dfrac{1}{\sin A\cos A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know, \[\dfrac{1}{\sin A}=\operatorname{cosec}A\] and \[\dfrac{1}{\cos A}=\sec A\]
Hence, we get \[1+2\operatorname{cosec}A\sec A+{{\operatorname{cosec}}^{2}}A{{\sec }^{2}}A\]
We can write it as
\[{{\left( 1 \right)}^{2}}+{{\left( \operatorname{cosec}A\sec A \right)}^{2}}+2\left( \operatorname{cosec}A\sec A \right).1\]
We know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
By considering \[a=1\] and \[\operatorname{cosec}A\sec A=B\]
We finally get \[LHS={{\left( 1+\operatorname{cosec}A\sec A \right)}^{2}}\] which is equal to \[\text{RHS}\].
Hence Proved.
Note: By looking the terms of \[\operatorname{cosec}A\] and \[secA\] in \[\text{RHS}\], students convert \[\sin A\] and \[\cos A\] into \[\dfrac{1}{\operatorname{cosec}A}\] and \[\dfrac{1}{secA}\] respectively in first step only, but that creates confusion and does not give the desired results.
We have to prove that \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}={{\left( 1+\sec A\operatorname{cosec}A \right)}^{2}}....\left( i \right)\]
Taking \[LHS\] of equation \[\left( i \right)\], we get
\[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]
Therefore, \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
\[={{\sin }^{2}}A+{{\sec }^{2}}A+2\sin A\sec A+{{\cos }^{2}}A+{{\operatorname{cosec}}^{2}}A+2\cos A\operatorname{cosec}A\]
Rearranging the equation, we get
\[\Rightarrow \left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A....\left( ii \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
Putting this value in equation \[\left( ii \right)\].
We get \[1+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A...\left( iii \right)\]
We know that \[\sec A=\dfrac{1}{\cos A}\] and \[\operatorname{cosec}A=\dfrac{1}{\sin A}\]
We will put the values of \[\sec A\] and \[\operatorname{cosec}A\] in equation \[\left( iii \right)\].
We get, \[1+2\left( \dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A}+\dfrac{1}{{{\cos }^{2}}A} \right)\]
\[=1+2\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\sin A\cos A} \right)+\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\].
Hence we get,
\[1+2\left( \dfrac{1}{\sin A\cos A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know, \[\dfrac{1}{\sin A}=\operatorname{cosec}A\] and \[\dfrac{1}{\cos A}=\sec A\]
Hence, we get \[1+2\operatorname{cosec}A\sec A+{{\operatorname{cosec}}^{2}}A{{\sec }^{2}}A\]
We can write it as
\[{{\left( 1 \right)}^{2}}+{{\left( \operatorname{cosec}A\sec A \right)}^{2}}+2\left( \operatorname{cosec}A\sec A \right).1\]
We know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
By considering \[a=1\] and \[\operatorname{cosec}A\sec A=B\]
We finally get \[LHS={{\left( 1+\operatorname{cosec}A\sec A \right)}^{2}}\] which is equal to \[\text{RHS}\].
Hence Proved.
Note: By looking the terms of \[\operatorname{cosec}A\] and \[secA\] in \[\text{RHS}\], students convert \[\sin A\] and \[\cos A\] into \[\dfrac{1}{\operatorname{cosec}A}\] and \[\dfrac{1}{secA}\] respectively in first step only, but that creates confusion and does not give the desired results.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

