Answer
Verified
494.4k+ views
Hint: - Taking conjugate of denominator.
Given,
L.H.S $\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \\
\\
\end{gathered} $
Multiply and Divide by $\left( {1 + \cos \theta } \right)$ , we get
$\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \times \frac{{1 + \cos \theta }}{{1 + \cos \theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\left( 1 \right)}^2} - {{\left( {\cos \theta } \right)}^2}}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }} \\
\end{gathered} $
We know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Or, ${\sin ^2}\theta = 1 - {\cos ^2}\theta $
Replace $\left( {1 - {{\cos }^2}\theta } \right)$ by ${\sin ^2}\theta $ , we get
L.H.S $\begin{gathered}
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\sin }^2}\theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta \times \sin \theta }} \\
\end{gathered} $
Cancel out $\sin \theta $ in numerator by $\sin \theta $ in denominator, we get
$\begin{gathered}
= \frac{{1 + \cos \theta }}{{\sin \theta }} \\
= \frac{1}{{\sin \theta }} + \frac{{\cos \theta }}{{\sin \theta }} \\
\end{gathered} $
Now we can written $\frac{1}{{\sin \theta }} = \cos ec\theta $ and $\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta $ , we get
L.H.S $ = \cos ec\theta + \cot \theta $- (1)
Since, given R.H.S$ = \cos ec\theta + \cot \theta $ - (2)
By seeing equation (1) and (2) we can tell that
L.H.S R.H.S
Hence, it proved.
Note: - These types of questions are also solve by taking R.H.S (Right Hand Side), solve it to prove L.H.S (Left Hand Side). During solving trigonometry proving we should always have basic trigonometry identities in our mind.
Given,
L.H.S $\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \\
\\
\end{gathered} $
Multiply and Divide by $\left( {1 + \cos \theta } \right)$ , we get
$\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \times \frac{{1 + \cos \theta }}{{1 + \cos \theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\left( 1 \right)}^2} - {{\left( {\cos \theta } \right)}^2}}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }} \\
\end{gathered} $
We know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Or, ${\sin ^2}\theta = 1 - {\cos ^2}\theta $
Replace $\left( {1 - {{\cos }^2}\theta } \right)$ by ${\sin ^2}\theta $ , we get
L.H.S $\begin{gathered}
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\sin }^2}\theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta \times \sin \theta }} \\
\end{gathered} $
Cancel out $\sin \theta $ in numerator by $\sin \theta $ in denominator, we get
$\begin{gathered}
= \frac{{1 + \cos \theta }}{{\sin \theta }} \\
= \frac{1}{{\sin \theta }} + \frac{{\cos \theta }}{{\sin \theta }} \\
\end{gathered} $
Now we can written $\frac{1}{{\sin \theta }} = \cos ec\theta $ and $\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta $ , we get
L.H.S $ = \cos ec\theta + \cot \theta $- (1)
Since, given R.H.S$ = \cos ec\theta + \cot \theta $ - (2)
By seeing equation (1) and (2) we can tell that
L.H.S R.H.S
Hence, it proved.
Note: - These types of questions are also solve by taking R.H.S (Right Hand Side), solve it to prove L.H.S (Left Hand Side). During solving trigonometry proving we should always have basic trigonometry identities in our mind.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE