
Prove that:
$\frac{{\sin \theta }}{{1 - \cos \theta }} = cosec\theta + \cot \theta $
Answer
611.1k+ views
Hint: - Taking conjugate of denominator.
Given,
L.H.S $\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \\
\\
\end{gathered} $
Multiply and Divide by $\left( {1 + \cos \theta } \right)$ , we get
$\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \times \frac{{1 + \cos \theta }}{{1 + \cos \theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\left( 1 \right)}^2} - {{\left( {\cos \theta } \right)}^2}}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }} \\
\end{gathered} $
We know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Or, ${\sin ^2}\theta = 1 - {\cos ^2}\theta $
Replace $\left( {1 - {{\cos }^2}\theta } \right)$ by ${\sin ^2}\theta $ , we get
L.H.S $\begin{gathered}
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\sin }^2}\theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta \times \sin \theta }} \\
\end{gathered} $
Cancel out $\sin \theta $ in numerator by $\sin \theta $ in denominator, we get
$\begin{gathered}
= \frac{{1 + \cos \theta }}{{\sin \theta }} \\
= \frac{1}{{\sin \theta }} + \frac{{\cos \theta }}{{\sin \theta }} \\
\end{gathered} $
Now we can written $\frac{1}{{\sin \theta }} = \cos ec\theta $ and $\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta $ , we get
L.H.S $ = \cos ec\theta + \cot \theta $- (1)
Since, given R.H.S$ = \cos ec\theta + \cot \theta $ - (2)
By seeing equation (1) and (2) we can tell that
L.H.S R.H.S
Hence, it proved.
Note: - These types of questions are also solve by taking R.H.S (Right Hand Side), solve it to prove L.H.S (Left Hand Side). During solving trigonometry proving we should always have basic trigonometry identities in our mind.
Given,
L.H.S $\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \\
\\
\end{gathered} $
Multiply and Divide by $\left( {1 + \cos \theta } \right)$ , we get
$\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \times \frac{{1 + \cos \theta }}{{1 + \cos \theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\left( 1 \right)}^2} - {{\left( {\cos \theta } \right)}^2}}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }} \\
\end{gathered} $
We know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Or, ${\sin ^2}\theta = 1 - {\cos ^2}\theta $
Replace $\left( {1 - {{\cos }^2}\theta } \right)$ by ${\sin ^2}\theta $ , we get
L.H.S $\begin{gathered}
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\sin }^2}\theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta \times \sin \theta }} \\
\end{gathered} $
Cancel out $\sin \theta $ in numerator by $\sin \theta $ in denominator, we get
$\begin{gathered}
= \frac{{1 + \cos \theta }}{{\sin \theta }} \\
= \frac{1}{{\sin \theta }} + \frac{{\cos \theta }}{{\sin \theta }} \\
\end{gathered} $
Now we can written $\frac{1}{{\sin \theta }} = \cos ec\theta $ and $\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta $ , we get
L.H.S $ = \cos ec\theta + \cot \theta $- (1)
Since, given R.H.S$ = \cos ec\theta + \cot \theta $ - (2)
By seeing equation (1) and (2) we can tell that
L.H.S R.H.S
Hence, it proved.
Note: - These types of questions are also solve by taking R.H.S (Right Hand Side), solve it to prove L.H.S (Left Hand Side). During solving trigonometry proving we should always have basic trigonometry identities in our mind.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the missing number in the sequence 259142027 class 10 maths CBSE

10 examples of evaporation in daily life with explanations

What is the full form of POSCO class 10 social science CBSE

What are the public facilities provided by the government? Also explain each facility

