
Prove that:
$\frac{{\sin \theta }}{{1 - \cos \theta }} = cosec\theta + \cot \theta $
Answer
554.7k+ views
Hint: - Taking conjugate of denominator.
Given,
L.H.S $\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \\
\\
\end{gathered} $
Multiply and Divide by $\left( {1 + \cos \theta } \right)$ , we get
$\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \times \frac{{1 + \cos \theta }}{{1 + \cos \theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\left( 1 \right)}^2} - {{\left( {\cos \theta } \right)}^2}}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }} \\
\end{gathered} $
We know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Or, ${\sin ^2}\theta = 1 - {\cos ^2}\theta $
Replace $\left( {1 - {{\cos }^2}\theta } \right)$ by ${\sin ^2}\theta $ , we get
L.H.S $\begin{gathered}
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\sin }^2}\theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta \times \sin \theta }} \\
\end{gathered} $
Cancel out $\sin \theta $ in numerator by $\sin \theta $ in denominator, we get
$\begin{gathered}
= \frac{{1 + \cos \theta }}{{\sin \theta }} \\
= \frac{1}{{\sin \theta }} + \frac{{\cos \theta }}{{\sin \theta }} \\
\end{gathered} $
Now we can written $\frac{1}{{\sin \theta }} = \cos ec\theta $ and $\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta $ , we get
L.H.S $ = \cos ec\theta + \cot \theta $- (1)
Since, given R.H.S$ = \cos ec\theta + \cot \theta $ - (2)
By seeing equation (1) and (2) we can tell that
L.H.S R.H.S
Hence, it proved.
Note: - These types of questions are also solve by taking R.H.S (Right Hand Side), solve it to prove L.H.S (Left Hand Side). During solving trigonometry proving we should always have basic trigonometry identities in our mind.
Given,
L.H.S $\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \\
\\
\end{gathered} $
Multiply and Divide by $\left( {1 + \cos \theta } \right)$ , we get
$\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \times \frac{{1 + \cos \theta }}{{1 + \cos \theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\left( 1 \right)}^2} - {{\left( {\cos \theta } \right)}^2}}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }} \\
\end{gathered} $
We know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Or, ${\sin ^2}\theta = 1 - {\cos ^2}\theta $
Replace $\left( {1 - {{\cos }^2}\theta } \right)$ by ${\sin ^2}\theta $ , we get
L.H.S $\begin{gathered}
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\sin }^2}\theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta \times \sin \theta }} \\
\end{gathered} $
Cancel out $\sin \theta $ in numerator by $\sin \theta $ in denominator, we get
$\begin{gathered}
= \frac{{1 + \cos \theta }}{{\sin \theta }} \\
= \frac{1}{{\sin \theta }} + \frac{{\cos \theta }}{{\sin \theta }} \\
\end{gathered} $
Now we can written $\frac{1}{{\sin \theta }} = \cos ec\theta $ and $\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta $ , we get
L.H.S $ = \cos ec\theta + \cot \theta $- (1)
Since, given R.H.S$ = \cos ec\theta + \cot \theta $ - (2)
By seeing equation (1) and (2) we can tell that
L.H.S R.H.S
Hence, it proved.
Note: - These types of questions are also solve by taking R.H.S (Right Hand Side), solve it to prove L.H.S (Left Hand Side). During solving trigonometry proving we should always have basic trigonometry identities in our mind.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The aviation fuel used in the engines of jet airplanes class 10 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Why is it 530 pm in india when it is 1200 afternoon class 10 social science CBSE

What is the full form of POSCO class 10 social science CBSE

Draw a labelled diagram of the human digestive system class 10 biology CBSE

What is potential and actual resources
