Answer
Verified
426.9k+ views
Hint: There is a property of a circle which states that if we draw a perpendicular from Centre to any chord of the circle, then these perpendicular divides the chord into two equal halves. Use this property to solve this question.
Complete step-by-step solution:
Let us assume a circle having Centre at O and radius equal to r. This circle is having two equal chords AB and CD having a length equal to x. From O, two perpendiculars OE and OF are drawn to chords AB and CD. Let us denote the length of OE = d and the length of OF = d'.
In circles, we have a property that if we draw a perpendicular from the Centre of the circle to any of its chord, these perpendicular divides the chord into two equal parts. From this property in the figure above, we can say AE = BE = DF = CF = $\dfrac{x}{2}$ ………………. (1)
In the question, we have to prove equal chords of a circle are equidistant from the Centre. So, we have to find the lengths of perpendicular distance OE and OF.
To find these lengths, we will use Pythagoras theorem which, the relation between the base, perpendicular and the hypotenuse of a right-angle triangle ABC is given by,
${\left( {{\text{AC}}} \right)^{\text{2}}}{\text{ = }}{\left( {{\text{AB}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{BC}}} \right)^{\text{2}}}$………………… (2)
Applying Pythagoras theorem from equation (2) in triangle OEB, we get,
$\Rightarrow$${\left( {{\text{OB}}} \right)^{\text{2}}}{\text{ = }}{\left( {{\text{OE}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{EB}}} \right)^{\text{2}}}$
Since, OB is the radius of the circle, OB = r.
And also, from (1), we have EB = $\dfrac{x}{2}$. Substituting in the above equation we get,
$\Rightarrow$${\left( r \right)^{\text{2}}}{\text{ = }}{\left( {{\text{OE}}} \right)^{\text{2}}}{\text{ + }}{\left( {\dfrac{x}{2}} \right)^{\text{2}}}$
$\Rightarrow$${\left( {{\text{OE}}} \right)^{\text{2}}}{\text{ = }}{{\text{r}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}$
$\Rightarrow$$\left( {{\text{OE}}} \right){\text{ = }}\sqrt {{{\text{r}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}} $………………….. (3)
Applying Pythagoras theorem from equation (2) in triangle OFC, we get,
$\Rightarrow$${\left( {{\text{OC}}} \right)^{\text{2}}}{\text{ = }}{\left( {{\text{OF}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{FC}}} \right)^{\text{2}}}$
Since, OB is the radius of the circle, OC = r.
And also, from (1), we have FC = $\dfrac{x}{2}$. Substituting in the above equation we get
$\Rightarrow$${\left( r \right)^{\text{2}}}{\text{ = }}{\left( {{\text{OF}}} \right)^{\text{2}}}{\text{ + }}{\left( {\dfrac{x}{2}} \right)^{\text{2}}}$
$\Rightarrow$${\left( {{\text{OF}}} \right)^{\text{2}}}{\text{ = }}{{\text{r}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}$
$\Rightarrow$$\left( {{\text{OF}}} \right){\text{ = }}\sqrt {{{\text{r}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}} $………………….. (4)
From equation (3) and equation (4), we get,
$\Rightarrow$OE = OF
Hence, we can say equal chords of a circle are equidistant from the Centre.
Note: The above question can also be done by the concept of congruent triangles. We can prove triangle OEB and triangle OFC and by corresponding parts of congruent triangles and easily we can prove OE=OF or we say Equal chords of a circle (or of congruent circles) are equidistant from the Centre (or centres).
Complete step-by-step solution:
Let us assume a circle having Centre at O and radius equal to r. This circle is having two equal chords AB and CD having a length equal to x. From O, two perpendiculars OE and OF are drawn to chords AB and CD. Let us denote the length of OE = d and the length of OF = d'.
In circles, we have a property that if we draw a perpendicular from the Centre of the circle to any of its chord, these perpendicular divides the chord into two equal parts. From this property in the figure above, we can say AE = BE = DF = CF = $\dfrac{x}{2}$ ………………. (1)
In the question, we have to prove equal chords of a circle are equidistant from the Centre. So, we have to find the lengths of perpendicular distance OE and OF.
To find these lengths, we will use Pythagoras theorem which, the relation between the base, perpendicular and the hypotenuse of a right-angle triangle ABC is given by,
${\left( {{\text{AC}}} \right)^{\text{2}}}{\text{ = }}{\left( {{\text{AB}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{BC}}} \right)^{\text{2}}}$………………… (2)
Applying Pythagoras theorem from equation (2) in triangle OEB, we get,
$\Rightarrow$${\left( {{\text{OB}}} \right)^{\text{2}}}{\text{ = }}{\left( {{\text{OE}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{EB}}} \right)^{\text{2}}}$
Since, OB is the radius of the circle, OB = r.
And also, from (1), we have EB = $\dfrac{x}{2}$. Substituting in the above equation we get,
$\Rightarrow$${\left( r \right)^{\text{2}}}{\text{ = }}{\left( {{\text{OE}}} \right)^{\text{2}}}{\text{ + }}{\left( {\dfrac{x}{2}} \right)^{\text{2}}}$
$\Rightarrow$${\left( {{\text{OE}}} \right)^{\text{2}}}{\text{ = }}{{\text{r}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}$
$\Rightarrow$$\left( {{\text{OE}}} \right){\text{ = }}\sqrt {{{\text{r}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}} $………………….. (3)
Applying Pythagoras theorem from equation (2) in triangle OFC, we get,
$\Rightarrow$${\left( {{\text{OC}}} \right)^{\text{2}}}{\text{ = }}{\left( {{\text{OF}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{FC}}} \right)^{\text{2}}}$
Since, OB is the radius of the circle, OC = r.
And also, from (1), we have FC = $\dfrac{x}{2}$. Substituting in the above equation we get
$\Rightarrow$${\left( r \right)^{\text{2}}}{\text{ = }}{\left( {{\text{OF}}} \right)^{\text{2}}}{\text{ + }}{\left( {\dfrac{x}{2}} \right)^{\text{2}}}$
$\Rightarrow$${\left( {{\text{OF}}} \right)^{\text{2}}}{\text{ = }}{{\text{r}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}$
$\Rightarrow$$\left( {{\text{OF}}} \right){\text{ = }}\sqrt {{{\text{r}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}} $………………….. (4)
From equation (3) and equation (4), we get,
$\Rightarrow$OE = OF
Hence, we can say equal chords of a circle are equidistant from the Centre.
Note: The above question can also be done by the concept of congruent triangles. We can prove triangle OEB and triangle OFC and by corresponding parts of congruent triangles and easily we can prove OE=OF or we say Equal chords of a circle (or of congruent circles) are equidistant from the Centre (or centres).
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell