
Prove that $\dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = 1 + \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right)$.
Answer
601.8k+ views
Hint- Here, we will proceed by converting all the trigonometric functions given in the LHS of the equation which we needed to prove and then taking the LCM. After this, we will use the formula ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ in order to get the RHS of the equation we needed to prove.
Complete step-by-step answer:
To prove: $\dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = 1 + \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right)$
Since, $\tan {\text{A}} = \dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$ and $\cot {\text{A}} = \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$
Taking the LHS of the equation we need to prove and using the above formulas, we have
$ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}{{1 - \left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}} + \dfrac{{\left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}}{{1 - \left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}$
By taking separately the LCM of the two terms given in the denominator of the RHS of the above equation as sinA and cosA respectively, we get
$
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}{{\left( {\dfrac{{\sin {\text{A}} - \cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}} + \dfrac{{\left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}}{{\left( {\dfrac{{\cos {\text{A}} - \sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\sin {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} + \dfrac{{\left( {\cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\cos {\text{A}} - \sin {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^2}}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} - \dfrac{{{{\left( {\cos {\text{A}}} \right)}^2}}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}} \\
$
By taking the LCM of the terms given in the RHS of the above equation as (sinA)(cosA)(sinA - cosA), we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^2}\left( {\sin {\text{A}}} \right) - {{\left( {\cos {\text{A}}} \right)}^2}\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^3} - {{\left( {\cos {\text{A}}} \right)}^3}}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}} \\
\]
Using the formula ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, we get
\[ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2} + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)} \right]}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}}\]
By cancelling (sinA - cosA) from the numerator and the denominator of the RHS of the above equation, we get
\[ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2} + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)} \right]}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}\]
Using the identity \[{\left( {\sin {\text{A}}} \right)^2} + {\left( {\cos {\text{A}}} \right)^2} = 1\] in the above equation, we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{1 + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{1}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} + \dfrac{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {\dfrac{1}{{\sin {\text{A}}}}} \right)\left( {\dfrac{1}{{\cos {\text{A}}}}} \right) + 1 \\
\]
Using the formulas \[{\text{cosecA}} = \dfrac{1}{{\sin {\text{A}}}}\] and \[\sec {\text{A}} = \dfrac{1}{{\cos {\text{A}}}}\] in the above equation, we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {{\text{cosecA}}} \right)\left( {\sec {\text{A}}} \right) + 1 \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right) + 1 \\
\]
The above equation is the same equation which we needed to prove.
Note- In this particular problem, we have used the basic definitions of tangent trigonometric function, cotangent trigonometric function, secant trigonometric function and cosine trigonometric function as given by $\tan {\text{A}} = \dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$, $\cot {\text{A}} = \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$, \[\sec {\text{A}} = \dfrac{1}{{\cos {\text{A}}}}\] and \[{\text{cosecA}} = \dfrac{1}{{\sin {\text{A}}}}\].
Complete step-by-step answer:
To prove: $\dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = 1 + \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right)$
Since, $\tan {\text{A}} = \dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$ and $\cot {\text{A}} = \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$
Taking the LHS of the equation we need to prove and using the above formulas, we have
$ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}{{1 - \left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}} + \dfrac{{\left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}}{{1 - \left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}$
By taking separately the LCM of the two terms given in the denominator of the RHS of the above equation as sinA and cosA respectively, we get
$
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}{{\left( {\dfrac{{\sin {\text{A}} - \cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}} + \dfrac{{\left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}}{{\left( {\dfrac{{\cos {\text{A}} - \sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\sin {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} + \dfrac{{\left( {\cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\cos {\text{A}} - \sin {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^2}}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} - \dfrac{{{{\left( {\cos {\text{A}}} \right)}^2}}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}} \\
$
By taking the LCM of the terms given in the RHS of the above equation as (sinA)(cosA)(sinA - cosA), we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^2}\left( {\sin {\text{A}}} \right) - {{\left( {\cos {\text{A}}} \right)}^2}\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^3} - {{\left( {\cos {\text{A}}} \right)}^3}}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}} \\
\]
Using the formula ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, we get
\[ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2} + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)} \right]}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}}\]
By cancelling (sinA - cosA) from the numerator and the denominator of the RHS of the above equation, we get
\[ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2} + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)} \right]}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}\]
Using the identity \[{\left( {\sin {\text{A}}} \right)^2} + {\left( {\cos {\text{A}}} \right)^2} = 1\] in the above equation, we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{1 + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{1}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} + \dfrac{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {\dfrac{1}{{\sin {\text{A}}}}} \right)\left( {\dfrac{1}{{\cos {\text{A}}}}} \right) + 1 \\
\]
Using the formulas \[{\text{cosecA}} = \dfrac{1}{{\sin {\text{A}}}}\] and \[\sec {\text{A}} = \dfrac{1}{{\cos {\text{A}}}}\] in the above equation, we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {{\text{cosecA}}} \right)\left( {\sec {\text{A}}} \right) + 1 \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right) + 1 \\
\]
The above equation is the same equation which we needed to prove.
Note- In this particular problem, we have used the basic definitions of tangent trigonometric function, cotangent trigonometric function, secant trigonometric function and cosine trigonometric function as given by $\tan {\text{A}} = \dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$, $\cot {\text{A}} = \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$, \[\sec {\text{A}} = \dfrac{1}{{\cos {\text{A}}}}\] and \[{\text{cosecA}} = \dfrac{1}{{\sin {\text{A}}}}\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

