Answer
Verified
490.8k+ views
Hint: Divide the LHS by $\cos \theta $ and further use trigonometric formulas to convert the lower base into terms of $\sec \theta $ and $\tan \theta $ so that it could be cancelled out by the numerator. Use rationalizing to get to the answer.
Complete step-by-step answer:
We know that ${\sec ^2}\theta - {\tan ^2}\theta = 1$
LHS –
$\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}}$
Dividing numerator and denominator by $\cos \theta $ , we get
$\dfrac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}}$
= $\dfrac{{\tan \theta + \sec \theta - 1}}{{\left( {\tan \theta - \sec \theta } \right) + \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)}}$ ( from above)
= $\dfrac{{\tan \theta + \sec \theta - 1}}{{ - \left( {\sec \theta - \tan \theta } \right) + \left( {\sec \theta - tan\theta } \right)\left( {\sec \theta + \tan \theta } \right)}}$ ( Since ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$ )
= $\dfrac{{\tan \theta + \sec \theta - 1}}{{\left( {\sec \theta - \tan \theta } \right)\left( {\sec \theta + \tan \theta - 1} \right)}}$
= $\dfrac{1}{{\left( {\sec \theta - \tan \theta } \right)}}$ ( cancelling out the common terms)
= $\dfrac{1}{{\left( {\sec \theta - \tan \theta } \right)}}\dfrac{{\left( {\sec \theta + \tan \theta } \right)}}{{\left( {\sec \theta + \tan \theta } \right)}}$ ( Rationalizing )
= $\dfrac{{\sec \theta + \tan \theta }}{{{{\sec }^2}\theta - {{\tan }^2}\theta }}$ = $\sec \theta + \tan \theta $ = RHS
Hence proved.
Note: In these questions it is advised to simplify the LHS or the RHS according to their complexity of trigonometric functions . Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar trigonometric functions to get to the final result .
Complete step-by-step answer:
We know that ${\sec ^2}\theta - {\tan ^2}\theta = 1$
LHS –
$\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}}$
Dividing numerator and denominator by $\cos \theta $ , we get
$\dfrac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}}$
= $\dfrac{{\tan \theta + \sec \theta - 1}}{{\left( {\tan \theta - \sec \theta } \right) + \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)}}$ ( from above)
= $\dfrac{{\tan \theta + \sec \theta - 1}}{{ - \left( {\sec \theta - \tan \theta } \right) + \left( {\sec \theta - tan\theta } \right)\left( {\sec \theta + \tan \theta } \right)}}$ ( Since ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$ )
= $\dfrac{{\tan \theta + \sec \theta - 1}}{{\left( {\sec \theta - \tan \theta } \right)\left( {\sec \theta + \tan \theta - 1} \right)}}$
= $\dfrac{1}{{\left( {\sec \theta - \tan \theta } \right)}}$ ( cancelling out the common terms)
= $\dfrac{1}{{\left( {\sec \theta - \tan \theta } \right)}}\dfrac{{\left( {\sec \theta + \tan \theta } \right)}}{{\left( {\sec \theta + \tan \theta } \right)}}$ ( Rationalizing )
= $\dfrac{{\sec \theta + \tan \theta }}{{{{\sec }^2}\theta - {{\tan }^2}\theta }}$ = $\sec \theta + \tan \theta $ = RHS
Hence proved.
Note: In these questions it is advised to simplify the LHS or the RHS according to their complexity of trigonometric functions . Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar trigonometric functions to get to the final result .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE