Answer
Verified
488.1k+ views
Hint: Use formula \[\sin 2\theta =2\sin \theta \cos \theta \]and express equation in form of
\[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\].
We have to prove that \[\dfrac{1}{\sin {{10}^{o}}}-\dfrac{\sqrt{3}}{\cos {{10}^{o}}}=4....\left( i \right)\]
Taking left hand side of equation \[\left( i \right)\]
\[\Rightarrow \dfrac{1}{\sin {{10}^{o}}}-\dfrac{\sqrt{3}}{\cos {{10}^{o}}}\]
\[=\dfrac{\cos {{10}^{o}}-\left( \sin {{10}^{o}} \right).\sqrt{3}}{\sin {{10}^{o}}.\cos {{10}^{o}}}\]
Now, we will multiply numerator and denominator by \[2\].
We get, \[\dfrac{2\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{2\sin {{10}^{o}}.\cos {{10}^{o}}}....\left( ii \right)\]
Now, we know that \[2\sin \theta \cos \theta =\sin 2\theta \]
Therefore, \[2\sin {{10}^{o}}.\cos {{10}^{o}}=\sin 2\left( {{10}^{o}} \right)\]\[=\sin {{20}^{o}}\]
We will put the value of \[2\sin {{10}^{o}}\cos {{10}^{o}}\]in equation \[\left( ii \right)\].
We get \[\dfrac{2\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}\]
We will multiply and divide numerator by \[2\].
We get, \[\dfrac{2.2.\dfrac{1}{2}\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}\]
By rearranging the equation and taking \[\dfrac{1}{2}\]inside the bracket.
We get, \[\dfrac{4\left( \dfrac{1}{2}\cos {{10}^{o}}-\dfrac{\sqrt{3}}{2}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}...\left( iii \right)\]
Now, we know that \[\sin {{30}^{o}}=\dfrac{1}{2}\]and \[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\].
We put these values in equation \[\left( iii \right)\].
We get \[\dfrac{4\left( \sin {{30}^{o}}\cos {{10}^{o}}-\cos {{30}^{o}}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}....\left( iv \right)\]
We know that \[\sin A\cos B-\cos A\sin B=\sin \left( A-B \right)\]
Therefore, \[\sin {{30}^{o}}\cos {{10}^{o}}-\cos {{30}^{o}}\sin {{10}^{o}}=\sin \left( {{30}^{o}}-{{10}^{o}} \right)=\sin {{20}^{o}}\]
Putting these values in equation \[\left( iv \right)\]
We get, \[\dfrac{4\sin {{20}^{o}}}{\sin {{20}^{o}}}\]
\[=4\]\[=\]Right hand side or RHS
Therefore, \[LHS=RHS\][Hence Proved]
Note: Some students try to use \[\dfrac{1}{\sin {{10}^{o}}}=\operatorname{cosec}{{10}^{o}}\] and
\[\dfrac{1}{\cos {{10}^{o}}}=\sec {{10}^{o}}\]in question to get away with fractions, but this actually
creates confusion and makes solution lengthy.
\[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\].
We have to prove that \[\dfrac{1}{\sin {{10}^{o}}}-\dfrac{\sqrt{3}}{\cos {{10}^{o}}}=4....\left( i \right)\]
Taking left hand side of equation \[\left( i \right)\]
\[\Rightarrow \dfrac{1}{\sin {{10}^{o}}}-\dfrac{\sqrt{3}}{\cos {{10}^{o}}}\]
\[=\dfrac{\cos {{10}^{o}}-\left( \sin {{10}^{o}} \right).\sqrt{3}}{\sin {{10}^{o}}.\cos {{10}^{o}}}\]
Now, we will multiply numerator and denominator by \[2\].
We get, \[\dfrac{2\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{2\sin {{10}^{o}}.\cos {{10}^{o}}}....\left( ii \right)\]
Now, we know that \[2\sin \theta \cos \theta =\sin 2\theta \]
Therefore, \[2\sin {{10}^{o}}.\cos {{10}^{o}}=\sin 2\left( {{10}^{o}} \right)\]\[=\sin {{20}^{o}}\]
We will put the value of \[2\sin {{10}^{o}}\cos {{10}^{o}}\]in equation \[\left( ii \right)\].
We get \[\dfrac{2\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}\]
We will multiply and divide numerator by \[2\].
We get, \[\dfrac{2.2.\dfrac{1}{2}\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}\]
By rearranging the equation and taking \[\dfrac{1}{2}\]inside the bracket.
We get, \[\dfrac{4\left( \dfrac{1}{2}\cos {{10}^{o}}-\dfrac{\sqrt{3}}{2}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}...\left( iii \right)\]
Now, we know that \[\sin {{30}^{o}}=\dfrac{1}{2}\]and \[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\].
We put these values in equation \[\left( iii \right)\].
We get \[\dfrac{4\left( \sin {{30}^{o}}\cos {{10}^{o}}-\cos {{30}^{o}}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}....\left( iv \right)\]
We know that \[\sin A\cos B-\cos A\sin B=\sin \left( A-B \right)\]
Therefore, \[\sin {{30}^{o}}\cos {{10}^{o}}-\cos {{30}^{o}}\sin {{10}^{o}}=\sin \left( {{30}^{o}}-{{10}^{o}} \right)=\sin {{20}^{o}}\]
Putting these values in equation \[\left( iv \right)\]
We get, \[\dfrac{4\sin {{20}^{o}}}{\sin {{20}^{o}}}\]
\[=4\]\[=\]Right hand side or RHS
Therefore, \[LHS=RHS\][Hence Proved]
Note: Some students try to use \[\dfrac{1}{\sin {{10}^{o}}}=\operatorname{cosec}{{10}^{o}}\] and
\[\dfrac{1}{\cos {{10}^{o}}}=\sec {{10}^{o}}\]in question to get away with fractions, but this actually
creates confusion and makes solution lengthy.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE