
Prove that \[\dfrac{1}{\sin {{10}^{o}}}-\dfrac{\sqrt{3}}{\cos {{10}^{o}}}=4\].
Answer
623.1k+ views
Hint: Use formula \[\sin 2\theta =2\sin \theta \cos \theta \]and express equation in form of
\[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\].
We have to prove that \[\dfrac{1}{\sin {{10}^{o}}}-\dfrac{\sqrt{3}}{\cos {{10}^{o}}}=4....\left( i \right)\]
Taking left hand side of equation \[\left( i \right)\]
\[\Rightarrow \dfrac{1}{\sin {{10}^{o}}}-\dfrac{\sqrt{3}}{\cos {{10}^{o}}}\]
\[=\dfrac{\cos {{10}^{o}}-\left( \sin {{10}^{o}} \right).\sqrt{3}}{\sin {{10}^{o}}.\cos {{10}^{o}}}\]
Now, we will multiply numerator and denominator by \[2\].
We get, \[\dfrac{2\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{2\sin {{10}^{o}}.\cos {{10}^{o}}}....\left( ii \right)\]
Now, we know that \[2\sin \theta \cos \theta =\sin 2\theta \]
Therefore, \[2\sin {{10}^{o}}.\cos {{10}^{o}}=\sin 2\left( {{10}^{o}} \right)\]\[=\sin {{20}^{o}}\]
We will put the value of \[2\sin {{10}^{o}}\cos {{10}^{o}}\]in equation \[\left( ii \right)\].
We get \[\dfrac{2\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}\]
We will multiply and divide numerator by \[2\].
We get, \[\dfrac{2.2.\dfrac{1}{2}\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}\]
By rearranging the equation and taking \[\dfrac{1}{2}\]inside the bracket.
We get, \[\dfrac{4\left( \dfrac{1}{2}\cos {{10}^{o}}-\dfrac{\sqrt{3}}{2}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}...\left( iii \right)\]
Now, we know that \[\sin {{30}^{o}}=\dfrac{1}{2}\]and \[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\].
We put these values in equation \[\left( iii \right)\].
We get \[\dfrac{4\left( \sin {{30}^{o}}\cos {{10}^{o}}-\cos {{30}^{o}}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}....\left( iv \right)\]
We know that \[\sin A\cos B-\cos A\sin B=\sin \left( A-B \right)\]
Therefore, \[\sin {{30}^{o}}\cos {{10}^{o}}-\cos {{30}^{o}}\sin {{10}^{o}}=\sin \left( {{30}^{o}}-{{10}^{o}} \right)=\sin {{20}^{o}}\]
Putting these values in equation \[\left( iv \right)\]
We get, \[\dfrac{4\sin {{20}^{o}}}{\sin {{20}^{o}}}\]
\[=4\]\[=\]Right hand side or RHS
Therefore, \[LHS=RHS\][Hence Proved]
Note: Some students try to use \[\dfrac{1}{\sin {{10}^{o}}}=\operatorname{cosec}{{10}^{o}}\] and
\[\dfrac{1}{\cos {{10}^{o}}}=\sec {{10}^{o}}\]in question to get away with fractions, but this actually
creates confusion and makes solution lengthy.
\[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\].
We have to prove that \[\dfrac{1}{\sin {{10}^{o}}}-\dfrac{\sqrt{3}}{\cos {{10}^{o}}}=4....\left( i \right)\]
Taking left hand side of equation \[\left( i \right)\]
\[\Rightarrow \dfrac{1}{\sin {{10}^{o}}}-\dfrac{\sqrt{3}}{\cos {{10}^{o}}}\]
\[=\dfrac{\cos {{10}^{o}}-\left( \sin {{10}^{o}} \right).\sqrt{3}}{\sin {{10}^{o}}.\cos {{10}^{o}}}\]
Now, we will multiply numerator and denominator by \[2\].
We get, \[\dfrac{2\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{2\sin {{10}^{o}}.\cos {{10}^{o}}}....\left( ii \right)\]
Now, we know that \[2\sin \theta \cos \theta =\sin 2\theta \]
Therefore, \[2\sin {{10}^{o}}.\cos {{10}^{o}}=\sin 2\left( {{10}^{o}} \right)\]\[=\sin {{20}^{o}}\]
We will put the value of \[2\sin {{10}^{o}}\cos {{10}^{o}}\]in equation \[\left( ii \right)\].
We get \[\dfrac{2\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}\]
We will multiply and divide numerator by \[2\].
We get, \[\dfrac{2.2.\dfrac{1}{2}\left( \cos {{10}^{o}}-\sqrt{3}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}\]
By rearranging the equation and taking \[\dfrac{1}{2}\]inside the bracket.
We get, \[\dfrac{4\left( \dfrac{1}{2}\cos {{10}^{o}}-\dfrac{\sqrt{3}}{2}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}...\left( iii \right)\]
Now, we know that \[\sin {{30}^{o}}=\dfrac{1}{2}\]and \[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\].
We put these values in equation \[\left( iii \right)\].
We get \[\dfrac{4\left( \sin {{30}^{o}}\cos {{10}^{o}}-\cos {{30}^{o}}\sin {{10}^{o}} \right)}{\sin {{20}^{o}}}....\left( iv \right)\]
We know that \[\sin A\cos B-\cos A\sin B=\sin \left( A-B \right)\]
Therefore, \[\sin {{30}^{o}}\cos {{10}^{o}}-\cos {{30}^{o}}\sin {{10}^{o}}=\sin \left( {{30}^{o}}-{{10}^{o}} \right)=\sin {{20}^{o}}\]
Putting these values in equation \[\left( iv \right)\]
We get, \[\dfrac{4\sin {{20}^{o}}}{\sin {{20}^{o}}}\]
\[=4\]\[=\]Right hand side or RHS
Therefore, \[LHS=RHS\][Hence Proved]
Note: Some students try to use \[\dfrac{1}{\sin {{10}^{o}}}=\operatorname{cosec}{{10}^{o}}\] and
\[\dfrac{1}{\cos {{10}^{o}}}=\sec {{10}^{o}}\]in question to get away with fractions, but this actually
creates confusion and makes solution lengthy.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

