Answer
Verified
448.2k+ views
Hint: Here we will first take an assumption that \[5 + \sqrt 2 \] is an rational number and then write it in the form of \[\dfrac{a}{b}\] and then solve both the sides to get the desired answer.
An irrational number is a number which non terminating as well as non recurring and cannot be expressed in the form of \[\dfrac{a}{b}\]
Complete step-by-step answer:
Let us assume that \[5 + \sqrt 2 \] is rational. Then, there exist coprime positive integers a and b such that
\[
5 + \sqrt 2 = \dfrac{a}{b},b \ne 0 \\
\Rightarrow a = \left( {5 + \sqrt 2 } \right)b \\
\]
Solving it further we get:-
\[
a = 5b + \sqrt 2 b \\
\Rightarrow \sqrt 2 b = a - 5b \\
\Rightarrow \sqrt 2 = \dfrac{{a - 5b}}{b} \\
\]
Now since we know that a and b are coprime and \[b \ne 0\]
Therefore the quantity \[\dfrac{{a - 5b}}{b}\] is rational.
Also it is a known fact that \[\sqrt 2 \] is an irrational number as it cannot be expressed in the form of \[\dfrac{a}{b}\] and is non-terminating as well as non-recurring number.
So, as we know that a rational number cannot be equal to an irrational number i.e,
\[{\text{irrational number}} \ne {\text{rational number}}\]
Hence, this implies
\[\sqrt 2 \ne \dfrac{{a - 5b}}{b}\]
But this is a contradiction to our assumption
Therefore, our assumption is wrong
Hence \[5 + \sqrt 2 \] is not a rational number
Therefore, \[5 + \sqrt 2 \] is an irrational number.
Hence proved.
Note: Students should keep in mind that the only numbers which can be expressed in the form of \[\dfrac{a}{b}\] where a and b are co-prime numbers which means they have only 1 as their common factor and \[b \ne 0\] rest all are irrationals.
Also, a rational number and an irrational number can never be equal and when a rational number is added or subtracted from an irrational number then it always gives an irrational number.
An irrational number is a number which non terminating as well as non recurring and cannot be expressed in the form of \[\dfrac{a}{b}\]
Complete step-by-step answer:
Let us assume that \[5 + \sqrt 2 \] is rational. Then, there exist coprime positive integers a and b such that
\[
5 + \sqrt 2 = \dfrac{a}{b},b \ne 0 \\
\Rightarrow a = \left( {5 + \sqrt 2 } \right)b \\
\]
Solving it further we get:-
\[
a = 5b + \sqrt 2 b \\
\Rightarrow \sqrt 2 b = a - 5b \\
\Rightarrow \sqrt 2 = \dfrac{{a - 5b}}{b} \\
\]
Now since we know that a and b are coprime and \[b \ne 0\]
Therefore the quantity \[\dfrac{{a - 5b}}{b}\] is rational.
Also it is a known fact that \[\sqrt 2 \] is an irrational number as it cannot be expressed in the form of \[\dfrac{a}{b}\] and is non-terminating as well as non-recurring number.
So, as we know that a rational number cannot be equal to an irrational number i.e,
\[{\text{irrational number}} \ne {\text{rational number}}\]
Hence, this implies
\[\sqrt 2 \ne \dfrac{{a - 5b}}{b}\]
But this is a contradiction to our assumption
Therefore, our assumption is wrong
Hence \[5 + \sqrt 2 \] is not a rational number
Therefore, \[5 + \sqrt 2 \] is an irrational number.
Hence proved.
Note: Students should keep in mind that the only numbers which can be expressed in the form of \[\dfrac{a}{b}\] where a and b are co-prime numbers which means they have only 1 as their common factor and \[b \ne 0\] rest all are irrationals.
Also, a rational number and an irrational number can never be equal and when a rational number is added or subtracted from an irrational number then it always gives an irrational number.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE