
PQRS is a rectangle in which length is two times the breadth and L is midpoint of side PQ. With P and Q as centre, draw two quadrants. Find the ratio of rectangle PQRS to the area of shaded region.
Answer
435.5k+ views
Hint: To solve this question, firstly we will make the diagram of the figure according to data given in question. After that, we will find out the area of the rectangle. Then, using the formula of area of quadrant of circle, we will find the area of two quadrants. Then subtracting the area of two quadrants from the area of the rectangle, we will have an area of shaded portion. Then we will find the ratio of rectangle PQRS to the area of the shaded region.
Complete step by step answer:
Let us draw the diagram.
In question we are given that the length of the rectangle is twice the breadth of the rectangle.
So, let the breadth of rectangle be x units.
Then, the length of the rectangle will be equal to 2x units.
Let, L be mid - point on side PQ and P and Q be centre of quadrants and bounded area SLR denotes shaded part.
Now, we know that area of rectangle is equal to $l\times b$ , where l denotes length of rectangle and b denotes breadth of rectangle.
For rectangle PQRS, we have breadth b = x and length l = 2x
So, area of rectangle PQRS = $2x\times x$
On simplification, we get
Area of rectangle PQRS = $2{{x}^{2}}$
Now, we know that, quadrant is one-fourth part of a circle.
So, if area of circle is equals to $\pi {{r}^{2}}$, where r is equals to radius of circle, then
Area of the quadrant of the circle will be equal to $\dfrac{1}{4}\pi {{r}^{2}}$.
Now, as L is mid - point of length PQ and PQ = 2x units also, we now that mid – point divides line segments into two equal parts so,
PL = LQ = x units.
So, the radius of the quadrant with centre P and Q will be equal to x units.
So, area of quadrant with centre P = area of quadrant with centre Q = $\dfrac{1}{4}\pi {{x}^{2}}$ units
The, area of both quadrants together will be equals to $\dfrac{1}{4}\pi {{x}^{2}}+\dfrac{1}{4}\pi {{x}^{2}}$
Or, area of both quadrants together $=\dfrac{1}{2}\pi {{x}^{2}}$
Now, the area of the shaded part will be equal to the difference between area of Rectangle and area of summation of two quadrants.
So, Area of shaded part = $2{{x}^{2}}-\dfrac{1}{2}\pi {{x}^{2}}$
On simplification, we get
Area of shaded part = $\dfrac{{{x}^{2}}(4-\pi )}{2}$units
So, the ratio of rectangle PQRS to the area of shaded region = $\dfrac{2{{x}^{2}}}{\dfrac{{{x}^{2}}(4-\pi )}{2}}$
On simplification, we get
$\Rightarrow$ Ratio = $\dfrac{2}{\dfrac{(4-\pi )}{2}}$
$\Rightarrow$ Ratio =$\dfrac{4}{(4-\pi )}$
$\Rightarrow$ Ratio =$\dfrac{4}{\left( 4-\dfrac{22}{7} \right)}$
$\Rightarrow$ Ratio =$\dfrac{4}{\left( \dfrac{28-22}{7} \right)}$
$\Rightarrow$ Ratio =$\dfrac{28}{6}$
$\Rightarrow$ Ratio = $\dfrac{14}{3}$
Hence, the ratio of rectangle PQRS to the area of shaded region is equals to 14 : 3.
Note: To solve such questions one must know the formulas such as area of rectangle is equals to $l\times b$ , where l denotes length of rectangle and b denotes breadth of rectangle, area of circle is equals to $\pi {{r}^{2}}$, where r is equals to radius of circle and area of quadrant of circle will be equals to $\dfrac{1}{4}\pi {{r}^{2}}$. Always remember that the ratio has no units and if we have a fraction $\dfrac{a}{b}$, then ratio is a : b. Try not to make any calculation errors.
Complete step by step answer:
Let us draw the diagram.
In question we are given that the length of the rectangle is twice the breadth of the rectangle.
So, let the breadth of rectangle be x units.
Then, the length of the rectangle will be equal to 2x units.
Let, L be mid - point on side PQ and P and Q be centre of quadrants and bounded area SLR denotes shaded part.

Now, we know that area of rectangle is equal to $l\times b$ , where l denotes length of rectangle and b denotes breadth of rectangle.
For rectangle PQRS, we have breadth b = x and length l = 2x
So, area of rectangle PQRS = $2x\times x$
On simplification, we get
Area of rectangle PQRS = $2{{x}^{2}}$
Now, we know that, quadrant is one-fourth part of a circle.
So, if area of circle is equals to $\pi {{r}^{2}}$, where r is equals to radius of circle, then
Area of the quadrant of the circle will be equal to $\dfrac{1}{4}\pi {{r}^{2}}$.
Now, as L is mid - point of length PQ and PQ = 2x units also, we now that mid – point divides line segments into two equal parts so,
PL = LQ = x units.
So, the radius of the quadrant with centre P and Q will be equal to x units.
So, area of quadrant with centre P = area of quadrant with centre Q = $\dfrac{1}{4}\pi {{x}^{2}}$ units
The, area of both quadrants together will be equals to $\dfrac{1}{4}\pi {{x}^{2}}+\dfrac{1}{4}\pi {{x}^{2}}$
Or, area of both quadrants together $=\dfrac{1}{2}\pi {{x}^{2}}$
Now, the area of the shaded part will be equal to the difference between area of Rectangle and area of summation of two quadrants.
So, Area of shaded part = $2{{x}^{2}}-\dfrac{1}{2}\pi {{x}^{2}}$
On simplification, we get
Area of shaded part = $\dfrac{{{x}^{2}}(4-\pi )}{2}$units
So, the ratio of rectangle PQRS to the area of shaded region = $\dfrac{2{{x}^{2}}}{\dfrac{{{x}^{2}}(4-\pi )}{2}}$
On simplification, we get
$\Rightarrow$ Ratio = $\dfrac{2}{\dfrac{(4-\pi )}{2}}$
$\Rightarrow$ Ratio =$\dfrac{4}{(4-\pi )}$
$\Rightarrow$ Ratio =$\dfrac{4}{\left( 4-\dfrac{22}{7} \right)}$
$\Rightarrow$ Ratio =$\dfrac{4}{\left( \dfrac{28-22}{7} \right)}$
$\Rightarrow$ Ratio =$\dfrac{28}{6}$
$\Rightarrow$ Ratio = $\dfrac{14}{3}$
Hence, the ratio of rectangle PQRS to the area of shaded region is equals to 14 : 3.
Note: To solve such questions one must know the formulas such as area of rectangle is equals to $l\times b$ , where l denotes length of rectangle and b denotes breadth of rectangle, area of circle is equals to $\pi {{r}^{2}}$, where r is equals to radius of circle and area of quadrant of circle will be equals to $\dfrac{1}{4}\pi {{r}^{2}}$. Always remember that the ratio has no units and if we have a fraction $\dfrac{a}{b}$, then ratio is a : b. Try not to make any calculation errors.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE
