
PQR is a triangle right angled at P and M is a point on QR such that $\text{PM}\bot \text{QR}$. Show that $\text{P}{{\text{M}}^{2}}=\text{QM}\cdot \text{MR}$.
Answer
555.6k+ views
Hint: We have a right angled triangle and a perpendicular to the hypotenuse of this triangle. We will use the Pythagoras theorem multiple times to prove that $\text{P}{{\text{M}}^{2}}=\text{QM}\cdot \text{MR}$. The Pythagoras theorem states that in a right angled triangle, ${{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{side}_1 \right)}^{2}}+{{\left( \text{side}_2 \right)}^{2}}$. We will also use the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$.
Complete step-by-step solution:
Let us draw a rough diagram of the triangle $\text{PQR}$.
In $\Delta \text{PQR}$, $\angle \text{QPR}$ is the right angle. According to the Pythagoras theorem, in a right angled triangle, ${{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{side }_1 \right)}^{2}}+{{\left( \text{side}_2 \right)}^{2}}$. Using the Pythagoras theorem on $\Delta \text{PQR}$, we get the following equation,
$\text{Q}{{\text{R}}^{2}}=\text{P}{{\text{Q}}^{2}}+\text{P}{{\text{R}}^{2}}....(i)$
Now, we know that $\text{PM}\bot \text{QR}$. Let us consider $\Delta \text{PMQ}$ with the right angle at vertex $\text{M}$. Using the Pythagoras theorem for this triangle, we get
$\text{P}{{\text{Q}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}$.
Next, we will consider $\Delta \text{PMR}$ with the right angle at vertex $\text{M}$. In this triangle, we will use the Pythagoras theorem again, as follows,
$\text{P}{{\text{R}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$.
Now, substituting the values of $\text{P}{{\text{Q}}^{2}}$ and $\text{P}{{\text{R}}^{2}}$ in equation $(i)$, we get
$\begin{align}
&\text{Q}{{\text{R}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{P}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}} \\
& =2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}
\end{align}$
Now, from the above diagram, we can see that $\text{QR = QM + MR}$. Substituting this value in the above equation, we get
${{\left(\text{QM+MR}\right)}^{2}}=2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$
We will expand the left hand side of the above equation using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. So, we have the following equation,
$\text{Q}{{\text{M}}^{2}}\text{+M}{{\text{R}}^{2}}+2\text{QM}\cdot \text{MR}=2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$
Simplifying the above equation, we get
$\begin{align}
& 2\text{QM}\cdot \text{MR}=2\text{P}{{\text{M}}^{2}} \\
& \therefore \text{QM}\cdot \text{MR}=\text{P}{{\text{M}}^{2}} \\
\end{align}$
Hence, proved.
Note: It is useful to draw a rough diagram for such types of questions. Looking at the diagram, it becomes clear which triangles should be used to get the required result. When we have a right-angled triangle, it is natural to consider the use of the Pythagoras theorem. It is better to write the names of all sides explicitly so that minor mistakes in calculations can be avoided.
Complete step-by-step solution:
Let us draw a rough diagram of the triangle $\text{PQR}$.
In $\Delta \text{PQR}$, $\angle \text{QPR}$ is the right angle. According to the Pythagoras theorem, in a right angled triangle, ${{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{side }_1 \right)}^{2}}+{{\left( \text{side}_2 \right)}^{2}}$. Using the Pythagoras theorem on $\Delta \text{PQR}$, we get the following equation,
$\text{Q}{{\text{R}}^{2}}=\text{P}{{\text{Q}}^{2}}+\text{P}{{\text{R}}^{2}}....(i)$
Now, we know that $\text{PM}\bot \text{QR}$. Let us consider $\Delta \text{PMQ}$ with the right angle at vertex $\text{M}$. Using the Pythagoras theorem for this triangle, we get
$\text{P}{{\text{Q}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}$.
Next, we will consider $\Delta \text{PMR}$ with the right angle at vertex $\text{M}$. In this triangle, we will use the Pythagoras theorem again, as follows,
$\text{P}{{\text{R}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$.
Now, substituting the values of $\text{P}{{\text{Q}}^{2}}$ and $\text{P}{{\text{R}}^{2}}$ in equation $(i)$, we get
$\begin{align}
&\text{Q}{{\text{R}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{P}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}} \\
& =2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}
\end{align}$
Now, from the above diagram, we can see that $\text{QR = QM + MR}$. Substituting this value in the above equation, we get
${{\left(\text{QM+MR}\right)}^{2}}=2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$
We will expand the left hand side of the above equation using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. So, we have the following equation,
$\text{Q}{{\text{M}}^{2}}\text{+M}{{\text{R}}^{2}}+2\text{QM}\cdot \text{MR}=2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$
Simplifying the above equation, we get
$\begin{align}
& 2\text{QM}\cdot \text{MR}=2\text{P}{{\text{M}}^{2}} \\
& \therefore \text{QM}\cdot \text{MR}=\text{P}{{\text{M}}^{2}} \\
\end{align}$
Hence, proved.
Note: It is useful to draw a rough diagram for such types of questions. Looking at the diagram, it becomes clear which triangles should be used to get the required result. When we have a right-angled triangle, it is natural to consider the use of the Pythagoras theorem. It is better to write the names of all sides explicitly so that minor mistakes in calculations can be avoided.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

