
PQ is a chord of length 8 cm of a circle of radius 5 cm and centre O. The tangents at P and Q intersect at a point T. Find the length TP.
Answer
517.1k+ views
Hint: Draw a line TR which intersects PQ at R. Also, OT is perpendicular to PQ. Therefore, we can write PR = QR. Apply Pythagoras theorem and then solve the question.
Complete step-by-step solution -
Given in the question, chord PQ = 8cm.
Radius of the circle = 5cm.
TP and TQ are the tangents to the circle through P and Q.
To find: The length of TP.
Now, using the hint, draw a line TR which intersect PQ at R. SO, the figure will be-
Now let TR = y.
Since, OT is a perpendicular bisector of PQ.
We can say, PR = QR = 4cm.
Using the right triangle OTP and PTR, we have,
$T{P^2} = T{R^2} + P{R^2}$.
Also,
We use the concept that tangent at a point of a circle from any point which is outside to the circle is to be perpendicular to the radius ,Here OP is radius and TP is tangent at point P So we use pythagoras theorem for triangle TPO.
$ O{T^2} = T{P^2} + O{P^2} \\
\Rightarrow O{T^2} = (T{R^2} + P{R^2}) + O{P^2} \to (1) \\
$
Now, OT = OR + TR.
We know, OR = 3cm, TR = y (say).
Also, $O{R^2} = O{P^2} - P{R^2}$
Therefore, equation (1) will become –
$
\Rightarrow {(y + 3)^2} = ({y^2} + 16 + 25) \\
\Rightarrow {y^2} + 9 + 6y = {y^2} + 16 + 25 \\
\Rightarrow 6y = 32 \\
\therefore y = \dfrac{{16}}{3} \\
$
So, $y = TR = \dfrac{{16}}{3}$
We can write that, $
T{P^2} = T{R^2} + P{R^2} \\
\Rightarrow T{P^2} = {\left( {\dfrac{{16}}{3}} \right)^2} + {4^2} = \dfrac{{256}}{9} + 16 = \dfrac{{400}}{9} \\
\Rightarrow TP = \dfrac{{20}}{3}cm \\
$.
Hence, the length of TP is 20/3 cm.
Note: Whenever such types of questions appear, then write down the information and the values given in the question. Then, use the figure to find relation between various variables. As mentioned in the solution to find TP apply Pythagoras theorem in right angle triangle OTP and PTR, then find the values of the unknown lengths and then solve the question further to find TP.
Complete step-by-step solution -
Given in the question, chord PQ = 8cm.
Radius of the circle = 5cm.
TP and TQ are the tangents to the circle through P and Q.
To find: The length of TP.
Now, using the hint, draw a line TR which intersect PQ at R. SO, the figure will be-
Now let TR = y.
Since, OT is a perpendicular bisector of PQ.
We can say, PR = QR = 4cm.
Using the right triangle OTP and PTR, we have,
$T{P^2} = T{R^2} + P{R^2}$.
Also,
We use the concept that tangent at a point of a circle from any point which is outside to the circle is to be perpendicular to the radius ,Here OP is radius and TP is tangent at point P So we use pythagoras theorem for triangle TPO.
$ O{T^2} = T{P^2} + O{P^2} \\
\Rightarrow O{T^2} = (T{R^2} + P{R^2}) + O{P^2} \to (1) \\
$
Now, OT = OR + TR.
We know, OR = 3cm, TR = y (say).
Also, $O{R^2} = O{P^2} - P{R^2}$
Therefore, equation (1) will become –
$
\Rightarrow {(y + 3)^2} = ({y^2} + 16 + 25) \\
\Rightarrow {y^2} + 9 + 6y = {y^2} + 16 + 25 \\
\Rightarrow 6y = 32 \\
\therefore y = \dfrac{{16}}{3} \\
$
So, $y = TR = \dfrac{{16}}{3}$
We can write that, $
T{P^2} = T{R^2} + P{R^2} \\
\Rightarrow T{P^2} = {\left( {\dfrac{{16}}{3}} \right)^2} + {4^2} = \dfrac{{256}}{9} + 16 = \dfrac{{400}}{9} \\
\Rightarrow TP = \dfrac{{20}}{3}cm \\
$.
Hence, the length of TP is 20/3 cm.
Note: Whenever such types of questions appear, then write down the information and the values given in the question. Then, use the figure to find relation between various variables. As mentioned in the solution to find TP apply Pythagoras theorem in right angle triangle OTP and PTR, then find the values of the unknown lengths and then solve the question further to find TP.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

