Answer
Verified
393.1k+ views
Hint: Here, we will be using the general formula of distance-speed-time which is ${\text{Speed}} = \dfrac{{{\text{Distance}}}}{{{\text{Time}}}}{\text{ }}$ and also the concept of relative speed between the two cars.
Complete step-by-step answer:
Let us suppose the speed of a car starting from A is $x$ km per hour and the speed of car starting from B is $y$ km per hour.
Given, distance between the places A and B$ = 80$ km
As we know that ${\text{Speed}} = \dfrac{{{\text{Distance}}}}{{{\text{Time}}}}{\text{ }} \to {\text{(1)}}$
First case- When both the cars are moving in the same direction.
Given, time taken$ = 8$ hours
In this case, the relative speed between the two cars starting from A and B will be subtracted.
Relative speed$ = \left( {x - y} \right)$ km per hour
Using formula given by equation (1), we get
$\left( {x - y} \right) = \dfrac{{{\text{80}}}}{{\text{8}}} \Rightarrow x - y = 10{\text{ }} \to {\text{(2)}}$
Second case- When both the cars are moving towards each other i.e., in opposite directions.
Given, time taken$ = 1{\text{ hr 20 min}} = 1 + \dfrac{{20}}{{60}} = 1 + \dfrac{1}{3} = \dfrac{4}{3}$ hours
In this case, the relative speed between the two cars starting from A and B will be added.
Relative speed$ = \left( {x + y} \right)$ km per hour
Using formula given by equation (1), we get
$\left( {x + y} \right) = \dfrac{{{\text{80}}}}{{\dfrac{4}{3}}} = \dfrac{{80 \times 3}}{4} = 60 \Rightarrow x + y = 60{\text{ }} \to {\text{(3)}}$
Adding equations (2) and (1), we get
$ \Rightarrow x - y + x + y = 10 + 60 \Rightarrow 2x = 70 \Rightarrow x = 35$
Put the above value of $x$ in equation (2), we get
$ \Rightarrow 35 - y = 10 \Rightarrow y = 35 - 10 = 25$
Therefore, the speed of car starting from place A is 35 km per hour and the speed of the car starting from place B is 25 km per hour.
Note: In these types of problems, we have calculated relative speed because both the cars are moving and through relative speed we can actually obtain relation between their speeds. When they are moving in the same direction, the relative speed is the difference between their individual speeds and when they are moving in opposite directions, the relative speed is the sum of their individual speeds.
Complete step-by-step answer:
Let us suppose the speed of a car starting from A is $x$ km per hour and the speed of car starting from B is $y$ km per hour.
Given, distance between the places A and B$ = 80$ km
As we know that ${\text{Speed}} = \dfrac{{{\text{Distance}}}}{{{\text{Time}}}}{\text{ }} \to {\text{(1)}}$
First case- When both the cars are moving in the same direction.
Given, time taken$ = 8$ hours
In this case, the relative speed between the two cars starting from A and B will be subtracted.
Relative speed$ = \left( {x - y} \right)$ km per hour
Using formula given by equation (1), we get
$\left( {x - y} \right) = \dfrac{{{\text{80}}}}{{\text{8}}} \Rightarrow x - y = 10{\text{ }} \to {\text{(2)}}$
Second case- When both the cars are moving towards each other i.e., in opposite directions.
Given, time taken$ = 1{\text{ hr 20 min}} = 1 + \dfrac{{20}}{{60}} = 1 + \dfrac{1}{3} = \dfrac{4}{3}$ hours
In this case, the relative speed between the two cars starting from A and B will be added.
Relative speed$ = \left( {x + y} \right)$ km per hour
Using formula given by equation (1), we get
$\left( {x + y} \right) = \dfrac{{{\text{80}}}}{{\dfrac{4}{3}}} = \dfrac{{80 \times 3}}{4} = 60 \Rightarrow x + y = 60{\text{ }} \to {\text{(3)}}$
Adding equations (2) and (1), we get
$ \Rightarrow x - y + x + y = 10 + 60 \Rightarrow 2x = 70 \Rightarrow x = 35$
Put the above value of $x$ in equation (2), we get
$ \Rightarrow 35 - y = 10 \Rightarrow y = 35 - 10 = 25$
Therefore, the speed of car starting from place A is 35 km per hour and the speed of the car starting from place B is 25 km per hour.
Note: In these types of problems, we have calculated relative speed because both the cars are moving and through relative speed we can actually obtain relation between their speeds. When they are moving in the same direction, the relative speed is the difference between their individual speeds and when they are moving in opposite directions, the relative speed is the sum of their individual speeds.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE