Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.
Last updated date: 24th Mar 2023
•
Total views: 306.6k
•
Views today: 4.85k
Answer
306.6k+ views
Hint: Here, we will proceed by drawing the figure according to the problem statement and then we will be using the properties of parallelogram and rectangle (opposite sides are equal) to obtain the required relationship between their perimeters.
Complete step-by-step answer:
Given, we have ABCD as a parallelogram and ABEF as a rectangle with the same base AB.
Also given that, Area of parallelogram ABCD = Area of rectangle ABEF
To prove- Perimeter of parallelogram ABCD > Perimeter of rectangle ABEF
According to the properties of parallelogram and rectangle, we can say that the opposite sides of both parallelogram and rectangle are equal in their lengths.
In parallelogram ABCD, we can write
${\text{AB}} = {\text{CD }} \to {\text{(1)}}$
In rectangle ABEF, we can write
${\text{AB}} = {\text{EF }} \to {\text{(2)}}$
By comparing equations (1) and (2), we can see that the LHS of both the equations are the same so the RHS will also be equal.
i.e., ${\text{CD}} = {\text{EF }} \to {\text{(3)}}$
As we know that out of all the line segments that can be drawn to a given line from a particular point which is not lying on the given line, the perpendicular line segment is the shortest.
Now, if we consider A as that particular point and the given line as FC, out of the two line segments drawn AD and AF, AF is the shortest line segment because it is perpendicular to the line FC.
i.e., ${\text{AD}} > {\text{AF }} \to {\text{(4)}}$
Similarly, if we consider B as that particular point and the given line as FC, out of the two line segments drawn BC and BE, BE is the shortest line segment because it is perpendicular to the line FC.
i.e., ${\text{BC}} > {\text{BE }} \to {\text{(5)}}$
Adding inequalities (4) and (5), we get
${\text{AD}} + {\text{BC}} > {\text{AF}} + {\text{BE }} \to {\text{(6)}}$
Let us add side AB to both sides of the equation (3), we get
${\text{AB}} + {\text{CD}} = {\text{AB}} + {\text{EF }} \to {\text{(7)}}$
By adding the inequality (6) and the equation (7) with each other, we get
\[
{\text{AB}} + {\text{CD}} + {\text{AD}} + {\text{BC}} > {\text{AB}} + {\text{EF}} + {\text{AF}} + {\text{BE}} \\
\Rightarrow {\text{AB}} + {\text{BC}} + {\text{CD}} + {\text{AD}} > {\text{AB}} + {\text{BE}} + {\text{EF}} + {\text{AF }} \to {\text{(8)}} \\
\]
As we know that the perimeter of any parallelogram is equal to the sum of all the sides of that parallelogram and also the perimeter of any rectangle is equal to the sum of all the sides of that rectangle.
So, Perimeter of parallelogram ABCD = AB+BC+CD+AD
Perimeter of rectangle ABEF = AB+BE+EF+AF
Inequality (8) becomes
Perimeter of parallelogram ABCD > Perimeter of rectangle ABEF
Note: In this particular problem, we took AF and BE as the perpendicular line segments because according to property of rectangle, angles made by a rectangle are right angles. Also, here we added the equations and inequalities in such a way that in LHS we somehow get the perimeter of parallelogram ABCD and in RHs we get the perimeter of the rectangle ABEF.
Complete step-by-step answer:
Given, we have ABCD as a parallelogram and ABEF as a rectangle with the same base AB.

Also given that, Area of parallelogram ABCD = Area of rectangle ABEF
To prove- Perimeter of parallelogram ABCD > Perimeter of rectangle ABEF
According to the properties of parallelogram and rectangle, we can say that the opposite sides of both parallelogram and rectangle are equal in their lengths.
In parallelogram ABCD, we can write
${\text{AB}} = {\text{CD }} \to {\text{(1)}}$
In rectangle ABEF, we can write
${\text{AB}} = {\text{EF }} \to {\text{(2)}}$
By comparing equations (1) and (2), we can see that the LHS of both the equations are the same so the RHS will also be equal.
i.e., ${\text{CD}} = {\text{EF }} \to {\text{(3)}}$
As we know that out of all the line segments that can be drawn to a given line from a particular point which is not lying on the given line, the perpendicular line segment is the shortest.
Now, if we consider A as that particular point and the given line as FC, out of the two line segments drawn AD and AF, AF is the shortest line segment because it is perpendicular to the line FC.
i.e., ${\text{AD}} > {\text{AF }} \to {\text{(4)}}$
Similarly, if we consider B as that particular point and the given line as FC, out of the two line segments drawn BC and BE, BE is the shortest line segment because it is perpendicular to the line FC.
i.e., ${\text{BC}} > {\text{BE }} \to {\text{(5)}}$
Adding inequalities (4) and (5), we get
${\text{AD}} + {\text{BC}} > {\text{AF}} + {\text{BE }} \to {\text{(6)}}$
Let us add side AB to both sides of the equation (3), we get
${\text{AB}} + {\text{CD}} = {\text{AB}} + {\text{EF }} \to {\text{(7)}}$
By adding the inequality (6) and the equation (7) with each other, we get
\[
{\text{AB}} + {\text{CD}} + {\text{AD}} + {\text{BC}} > {\text{AB}} + {\text{EF}} + {\text{AF}} + {\text{BE}} \\
\Rightarrow {\text{AB}} + {\text{BC}} + {\text{CD}} + {\text{AD}} > {\text{AB}} + {\text{BE}} + {\text{EF}} + {\text{AF }} \to {\text{(8)}} \\
\]
As we know that the perimeter of any parallelogram is equal to the sum of all the sides of that parallelogram and also the perimeter of any rectangle is equal to the sum of all the sides of that rectangle.
So, Perimeter of parallelogram ABCD = AB+BC+CD+AD
Perimeter of rectangle ABEF = AB+BE+EF+AF
Inequality (8) becomes
Perimeter of parallelogram ABCD > Perimeter of rectangle ABEF
Note: In this particular problem, we took AF and BE as the perpendicular line segments because according to property of rectangle, angles made by a rectangle are right angles. Also, here we added the equations and inequalities in such a way that in LHS we somehow get the perimeter of parallelogram ABCD and in RHs we get the perimeter of the rectangle ABEF.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
