One factor of ${x^4} + {x^2} - 20$ is ${x^2} + 5$. What is the other factor?A. ${x^2} - 4$B. $x - 4$C. ${x^2} - 5$D. $x + 2$
Answer
Verified
478.2k+ views
Hint: Here we are given a factor of the polynomial. To find the other factor, we divide ${x^4} + {x^2} - 20$ by ${x^2} + 5$ using division algorithms and consider the quotient as the other factor.
Complete step by step answer:
Let’s take the number $10$ and one of its factors is $2$. To find the other factor, we divide $10$ by $2$, which gives the quotient as $5$. So, $5$ is another factor $10$.
We use the same logic for the given polynomials and find the required answer.
Step 1: We are given that ${x^2} + 5$ is a factor of${x^4} + {x^2} - 20$.
Now let, $p(x) = {x^4} + {x^2} - 20$ and $q(x) = {x^2} + 5$.
Since, $q(x)$ is a factor of $p(x)$. We know that $p(x) = q(x) \times g(x) + 0$, where $g(x)$ is the other factor. Here, $p(x)$ is the dividend, $q(x)$ is the divisor which is the given factor here, $g(x)$ is the quotient and remainder is zero.
Step 2: Now to find $g(x)$, we should divide $p(x)$ by $q(x)$
Here, p(x) is the dividend and q(x) is the divisor.
Step 3: Now, to start the division. First, we should divide the term with the highest degree of the dividend by the term with the highest degree of the divisor.
Here the term with the highest degree of the dividend is ${x^4}$and the term with the highest degree in the divisor is${x^2}$.
$ \Rightarrow \dfrac{{{x^4}}}{{{x^2}}} = {x^2}$
So, when we divide ${x^4}$ by ${x^2}$ we get${x^2}$, which is the first part of our quotient.
(i.e.)
Step 4: Multiply the term of the quotient which we found in the above step (i.e.)${x^2}$ with each term of the divisor and write it below the dividend
Now, by subtracting ${x^4} + 5{x^2}$ from ${x^4} + {x^2} - 20$, we get
Step 5: Now, let’s repeat steps 2 and 3 with our new dividend (i.e.) $ - 4{x^2} - 20$
In our new dividend, the term with the highest degree is and the term with the highest degree in the divisor is${x^2}$.
When we divide $ - 4{x^2}$ by ${x^2}$, we get$ - 4$.
$ \Rightarrow \dfrac{{ - 4{x^2}}}{{{x^2}}} = - 4$
This is the next term of our quotient.
Step 6: Now, multiply -4 with each term of the divisor and write it below the new dividend.
When we subtract $ - 4{x^2} - 20$ from our new dividend we get 0.
Step 7: Now, the quotient obtained is the other factor.
Therefore, ${x^2} - 4$ is the other factor.
For example if the given polynomial is ${x^4} + {x^2} - 20$. Here the ${x^3}$ is missing so let’s write $0{x^3}$ as this will make the calculation easier.
Recently Updated Pages
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it