Answer

Verified

481.8k+ views

Hint: Here, in this solution we will use the concept of independent events i.e.., “the two events E and F are said to be independent if and only if $P(E \cap F) = P(E).P(F)$.”

Complete step-by-step answer:

i. Given,

E: ‘the card drawn is spade’

F: ‘the card drawn is an ace’

In a deck of 52 cards, 13 cards will be spade and 4 cards are ace and only 1 card is an ace of spades.

Therefore,

$P(E)$=$\dfrac{{13}}{{52}} = \dfrac{1}{4}$i.e.., the probability of drawing a spade from a deck of 52 cards.

$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing an ace from a deck of 52 cards.

$P(E \cap F) = \dfrac{1}{{52}}$ i.e.., the probability of drawing a card which is spade as well as an ace from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{4}.\dfrac{1}{{13}} \\

\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{{52}}[\therefore L.H.S = R.H.S] \\

$

Therefore, we can say the events $E$ and $F$ are independent as they are satisfying the condition of independent events.

ii. Given,

$E$: ‘the card drawn is black’

$F$: ‘the card drawn is a king ’

In a deck of 52 cards, 26 cards are black and 4 cards are kings only 2cards are black as well as kings.

Therefore,

$P(E)$=$\dfrac{{26}}{{52}} = \dfrac{1}{2}$i.e.., the probability of drawing a black card from a deck of 52 cards.

$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing a king from a deck of 52 cards.

$P(E \cap F) = \dfrac{2}{{52}} = \dfrac{1}{{26}}$ i.e., the probability of drawing a card which is black as well as king from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{2}.\dfrac{1}{{13}} \\

\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{{26}}[\therefore L.H.S = R.H.S] \\

$

Therefore, we can say the events $E$and $F$ are independent as they are satisfying the condition of independent events.

iii. Given,

$E$: ‘the card drawn is a king or queen’

$F$: ‘the card drawn is a queen or jack’

In a deck of 52 cards, 4 cards are kings, 4 cards are queens and 4 cards are jacks.

Therefore,

$P(E)$=$\dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either king or queen.

$P(F) = \dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either queen or jack.

There are exactly 4 cards which are “king or queen” and “queen or jack”. i.e.., drawing only queen cards.

$P(E \cap F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$ i.e., the probability of drawing a card which is a queen from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{13}} = \dfrac{2}{{13}}.\dfrac{2}{{13}} \\

\Rightarrow \dfrac{1}{{13}} \ne \dfrac{4}{{169}} \\

$

Therefore, we can say the events E and F are not independent as they are not satisfying the condition of independent events.

Therefore, in two cases i.e.., (i), (ii) the events E and F are independent.

Note: If A, B are the events of a sample space S are said to be independent only if they are pairwise independent i.e., $P(A \cap B) = P(A).P(B)$.

Complete step-by-step answer:

i. Given,

E: ‘the card drawn is spade’

F: ‘the card drawn is an ace’

In a deck of 52 cards, 13 cards will be spade and 4 cards are ace and only 1 card is an ace of spades.

Therefore,

$P(E)$=$\dfrac{{13}}{{52}} = \dfrac{1}{4}$i.e.., the probability of drawing a spade from a deck of 52 cards.

$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing an ace from a deck of 52 cards.

$P(E \cap F) = \dfrac{1}{{52}}$ i.e.., the probability of drawing a card which is spade as well as an ace from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{4}.\dfrac{1}{{13}} \\

\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{{52}}[\therefore L.H.S = R.H.S] \\

$

Therefore, we can say the events $E$ and $F$ are independent as they are satisfying the condition of independent events.

ii. Given,

$E$: ‘the card drawn is black’

$F$: ‘the card drawn is a king ’

In a deck of 52 cards, 26 cards are black and 4 cards are kings only 2cards are black as well as kings.

Therefore,

$P(E)$=$\dfrac{{26}}{{52}} = \dfrac{1}{2}$i.e.., the probability of drawing a black card from a deck of 52 cards.

$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing a king from a deck of 52 cards.

$P(E \cap F) = \dfrac{2}{{52}} = \dfrac{1}{{26}}$ i.e., the probability of drawing a card which is black as well as king from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{2}.\dfrac{1}{{13}} \\

\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{{26}}[\therefore L.H.S = R.H.S] \\

$

Therefore, we can say the events $E$and $F$ are independent as they are satisfying the condition of independent events.

iii. Given,

$E$: ‘the card drawn is a king or queen’

$F$: ‘the card drawn is a queen or jack’

In a deck of 52 cards, 4 cards are kings, 4 cards are queens and 4 cards are jacks.

Therefore,

$P(E)$=$\dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either king or queen.

$P(F) = \dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either queen or jack.

There are exactly 4 cards which are “king or queen” and “queen or jack”. i.e.., drawing only queen cards.

$P(E \cap F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$ i.e., the probability of drawing a card which is a queen from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{13}} = \dfrac{2}{{13}}.\dfrac{2}{{13}} \\

\Rightarrow \dfrac{1}{{13}} \ne \dfrac{4}{{169}} \\

$

Therefore, we can say the events E and F are not independent as they are not satisfying the condition of independent events.

Therefore, in two cases i.e.., (i), (ii) the events E and F are independent.

Note: If A, B are the events of a sample space S are said to be independent only if they are pairwise independent i.e., $P(A \cap B) = P(A).P(B)$.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Who was the Governor general of India at the time of class 11 social science CBSE

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference Between Plant Cell and Animal Cell