# One Card is drawn at random from a well-shuffled deck of 52 cards. In how many of the following cases are the events E and F independent?

i. $E$: ‘the card drawn is spade’

$F$: ‘the card drawn is an ace’

ii. $E$: ‘the card drawn is black’

$F$: ‘the card drawn is a king ’

iii. $E$: ‘the card drawn is a king or queen’

$F$: ‘the card drawn is a queen or jack’

Last updated date: 21st Mar 2023

•

Total views: 304.2k

•

Views today: 5.83k

Answer

Verified

304.2k+ views

Hint: Here, in this solution we will use the concept of independent events i.e.., “the two events E and F are said to be independent if and only if $P(E \cap F) = P(E).P(F)$.”

Complete step-by-step answer:

i. Given,

E: ‘the card drawn is spade’

F: ‘the card drawn is an ace’

In a deck of 52 cards, 13 cards will be spade and 4 cards are ace and only 1 card is an ace of spades.

Therefore,

$P(E)$=$\dfrac{{13}}{{52}} = \dfrac{1}{4}$i.e.., the probability of drawing a spade from a deck of 52 cards.

$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing an ace from a deck of 52 cards.

$P(E \cap F) = \dfrac{1}{{52}}$ i.e.., the probability of drawing a card which is spade as well as an ace from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{4}.\dfrac{1}{{13}} \\

\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{{52}}[\therefore L.H.S = R.H.S] \\

$

Therefore, we can say the events $E$ and $F$ are independent as they are satisfying the condition of independent events.

ii. Given,

$E$: ‘the card drawn is black’

$F$: ‘the card drawn is a king ’

In a deck of 52 cards, 26 cards are black and 4 cards are kings only 2cards are black as well as kings.

Therefore,

$P(E)$=$\dfrac{{26}}{{52}} = \dfrac{1}{2}$i.e.., the probability of drawing a black card from a deck of 52 cards.

$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing a king from a deck of 52 cards.

$P(E \cap F) = \dfrac{2}{{52}} = \dfrac{1}{{26}}$ i.e., the probability of drawing a card which is black as well as king from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{2}.\dfrac{1}{{13}} \\

\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{{26}}[\therefore L.H.S = R.H.S] \\

$

Therefore, we can say the events $E$and $F$ are independent as they are satisfying the condition of independent events.

iii. Given,

$E$: ‘the card drawn is a king or queen’

$F$: ‘the card drawn is a queen or jack’

In a deck of 52 cards, 4 cards are kings, 4 cards are queens and 4 cards are jacks.

Therefore,

$P(E)$=$\dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either king or queen.

$P(F) = \dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either queen or jack.

There are exactly 4 cards which are “king or queen” and “queen or jack”. i.e.., drawing only queen cards.

$P(E \cap F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$ i.e., the probability of drawing a card which is a queen from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{13}} = \dfrac{2}{{13}}.\dfrac{2}{{13}} \\

\Rightarrow \dfrac{1}{{13}} \ne \dfrac{4}{{169}} \\

$

Therefore, we can say the events E and F are not independent as they are not satisfying the condition of independent events.

Therefore, in two cases i.e.., (i), (ii) the events E and F are independent.

Note: If A, B are the events of a sample space S are said to be independent only if they are pairwise independent i.e., $P(A \cap B) = P(A).P(B)$.

Complete step-by-step answer:

i. Given,

E: ‘the card drawn is spade’

F: ‘the card drawn is an ace’

In a deck of 52 cards, 13 cards will be spade and 4 cards are ace and only 1 card is an ace of spades.

Therefore,

$P(E)$=$\dfrac{{13}}{{52}} = \dfrac{1}{4}$i.e.., the probability of drawing a spade from a deck of 52 cards.

$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing an ace from a deck of 52 cards.

$P(E \cap F) = \dfrac{1}{{52}}$ i.e.., the probability of drawing a card which is spade as well as an ace from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{4}.\dfrac{1}{{13}} \\

\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{{52}}[\therefore L.H.S = R.H.S] \\

$

Therefore, we can say the events $E$ and $F$ are independent as they are satisfying the condition of independent events.

ii. Given,

$E$: ‘the card drawn is black’

$F$: ‘the card drawn is a king ’

In a deck of 52 cards, 26 cards are black and 4 cards are kings only 2cards are black as well as kings.

Therefore,

$P(E)$=$\dfrac{{26}}{{52}} = \dfrac{1}{2}$i.e.., the probability of drawing a black card from a deck of 52 cards.

$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing a king from a deck of 52 cards.

$P(E \cap F) = \dfrac{2}{{52}} = \dfrac{1}{{26}}$ i.e., the probability of drawing a card which is black as well as king from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{2}.\dfrac{1}{{13}} \\

\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{{26}}[\therefore L.H.S = R.H.S] \\

$

Therefore, we can say the events $E$and $F$ are independent as they are satisfying the condition of independent events.

iii. Given,

$E$: ‘the card drawn is a king or queen’

$F$: ‘the card drawn is a queen or jack’

In a deck of 52 cards, 4 cards are kings, 4 cards are queens and 4 cards are jacks.

Therefore,

$P(E)$=$\dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either king or queen.

$P(F) = \dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either queen or jack.

There are exactly 4 cards which are “king or queen” and “queen or jack”. i.e.., drawing only queen cards.

$P(E \cap F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$ i.e., the probability of drawing a card which is a queen from a deck of 52 cards.

Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.

$P(E \cap F) = P(E).P(F) \to (1)$

So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,

$

\Rightarrow \dfrac{1}{{13}} = \dfrac{2}{{13}}.\dfrac{2}{{13}} \\

\Rightarrow \dfrac{1}{{13}} \ne \dfrac{4}{{169}} \\

$

Therefore, we can say the events E and F are not independent as they are not satisfying the condition of independent events.

Therefore, in two cases i.e.., (i), (ii) the events E and F are independent.

Note: If A, B are the events of a sample space S are said to be independent only if they are pairwise independent i.e., $P(A \cap B) = P(A).P(B)$.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE