Answer
Verified
378.9k+ views
Hint: The given question revolves around the concepts of permutations and combinations. According to the problem, we have $ \left( {p + q + r} \right) $ different things to be distributed among three different people such that one person gets p things, second person gets q things and third person gets r things.
Complete step by step solution:
So, we have a total of $ \left( {p + q + r} \right) $ different things to be distributed among three persons such that the first person gets p things.
So, number of ways to select p different things out of $ \left( {p + q + r} \right) $ different things is $ ^{\left( {p + q + r} \right)}{C_p} $ .
Then, the second person gets q different things.
So, the number of ways to select p different things out of remaining $ \left( {q + r} \right) $ different things is $ ^{\left( {q + r} \right)}{C_q} $ .
Also, third person gets different things.
So, the number of ways to select r different things out of remaining r different things is $ ^r{C_r} $ .
Also, we know that p, q and r are different. So, first person has to be assigned with p things. Similarly, the second person has to be assigned with q things and third person with r things. So, there are $ 3! $ ways of arranging three people.
Now, we use the fundamental principle of counting.
So, the total number of ways of distributing $ \left( {p + q + r} \right) $ different things among three different people are $ ^{\left( {p + q + r} \right)}{C_p}{ \times ^{\left( {q + r} \right)}}{C_q}{ \times ^r}{C_r} \times 3! $ .
Now, we expand the formulae of combinations.
$ \Rightarrow \dfrac{{\left( {p + q + r} \right)!}}{{p!\left( {q + r} \right)!}} \times \dfrac{{\left( {q + r} \right)!}}{{q!r!}} \times \dfrac{{r!}}{{r!0!}} \times 3! $
Simplifying the expression further and substituting the value of $ 0! $ as one, we get,
$ \Rightarrow \dfrac{{\left( {p + q + r} \right)!}}{{p!}} \times \dfrac{1}{{q!}} \times \dfrac{1}{{r!}} \times 3! $
$ \Rightarrow \dfrac{{\left( {p + q + r} \right)!}}{{p!q!r!}} \times 3! $
So, the option (A) is correct.
So, the correct answer is “Option A”.
Note: One should know about the principle rule of counting or the multiplication rule. Care should be taken while handling the calculations. Calculations should be verified once so as to be sure of the answer.
Complete step by step solution:
So, we have a total of $ \left( {p + q + r} \right) $ different things to be distributed among three persons such that the first person gets p things.
So, number of ways to select p different things out of $ \left( {p + q + r} \right) $ different things is $ ^{\left( {p + q + r} \right)}{C_p} $ .
Then, the second person gets q different things.
So, the number of ways to select p different things out of remaining $ \left( {q + r} \right) $ different things is $ ^{\left( {q + r} \right)}{C_q} $ .
Also, third person gets different things.
So, the number of ways to select r different things out of remaining r different things is $ ^r{C_r} $ .
Also, we know that p, q and r are different. So, first person has to be assigned with p things. Similarly, the second person has to be assigned with q things and third person with r things. So, there are $ 3! $ ways of arranging three people.
Now, we use the fundamental principle of counting.
So, the total number of ways of distributing $ \left( {p + q + r} \right) $ different things among three different people are $ ^{\left( {p + q + r} \right)}{C_p}{ \times ^{\left( {q + r} \right)}}{C_q}{ \times ^r}{C_r} \times 3! $ .
Now, we expand the formulae of combinations.
$ \Rightarrow \dfrac{{\left( {p + q + r} \right)!}}{{p!\left( {q + r} \right)!}} \times \dfrac{{\left( {q + r} \right)!}}{{q!r!}} \times \dfrac{{r!}}{{r!0!}} \times 3! $
Simplifying the expression further and substituting the value of $ 0! $ as one, we get,
$ \Rightarrow \dfrac{{\left( {p + q + r} \right)!}}{{p!}} \times \dfrac{1}{{q!}} \times \dfrac{1}{{r!}} \times 3! $
$ \Rightarrow \dfrac{{\left( {p + q + r} \right)!}}{{p!q!r!}} \times 3! $
So, the option (A) is correct.
So, the correct answer is “Option A”.
Note: One should know about the principle rule of counting or the multiplication rule. Care should be taken while handling the calculations. Calculations should be verified once so as to be sure of the answer.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell