Answer
Verified
491.4k+ views
Hint: To find the algebraic expression to be added to ${{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1$ so that it is divisible by ${{x}^{2}}+2x-3$, we perform long division method to divide ${{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1$ and ${{x}^{2}}+2x-3$. Then the additive inverse of the remainder from this long division method would give us the expression to be added to ${{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1$ so that it is perfectly divisible by ${{x}^{2}}+2x-3$
Complete step-by-step solution:
To explain this method, say we divide 234 by 10. We would then get 23 as the quotient and 4 as the remainder. Thus, we need to add the additive inverse of the remainder (that is -4) from 234 to make it divisible by 10 (Thus, 234 + (-4) = 230, this is now divisible by 10). Now, the long division method is shown below.
${{x}^{2}}$+ 1
${{x}^{2}}+2x-3$ $\left| \!{\overline {\,
{{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1 \,}} \right. $
-$\left( {{x}^{4}}+2{{x}^{3}}-3{{x}^{2}} \right)$
\[\left| \!{\overline {\,
{{x}^{2}}+x-1\text{ } \,}} \right. \]
-$\left( {{x}^{2}}+2x-3 \right)$
\[\]
To understand this, we first write down the divisor (${{x}^{2}}+2x-3$) and dividend $({{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1)$ as shown above. Next we start with the highest power of x and accordingly find the first term of quotient. Thus, in this case since ${{x}^{4}}$ was the highest power term in the dividend, we divide this by the highest term in the divisor (${{x}^{2}}$), thus we get, $\dfrac{{{x}^{4}}}{{{x}^{2}}}={{x}^{4-2}}={{x}^{2}}$.
Next, we multiply ${{x}^{2}}+2x-3$ and ${{x}^{2}}$(first quotient term) to get ${{x}^{4}}+2{{x}^{3}}-3{{x}^{2}}$. Then we subtract ${{x}^{4}}+2{{x}^{3}}-3{{x}^{2}}$ from ${{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1$ (which is similar to the long division method). Finally, we obtain ${{x}^{2}}+x-1$ (from subtraction). We then apply the same technique again (but now, ${{x}^{2}}+x-1$ acts as the dividend). Thus, we divide the highest power of ${{x}^{2}}+x-1$ (that is ${{x}^{2}}$) by the highest power of the divisor. We get, $\dfrac{{{x}^{2}}}{{{x}^{2}}}$=1 (which is the next quotient term). We again multiply the divisor by this term (that is 1) and then perform subtraction to get (-x+2) as the remainder. We stop at this stage since now the highest power of (-x+2) is lower than the divisor itself.
Now, the additive inverse of the remainder is
=-(-x+2)
=x-2
Thus, we need to add (x-2) to ${{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1$ , so that it is divisible by ${{x}^{2}}+2x-3$.
Note: An alternative way to solve this problem would be to assume the expression to be added as Ax+B (we don’t need to have ${{x}^{2}}$ and higher terms here since while assumption we assume the expression with highest order as 1 less than the highest order of the divisor. Thus, in this case since the highest power of divisor is ${{x}^{2}}$, thus, the highest power of expression to be added is x). Now,
$\begin{align}
& ={{x}^{2}}+2x-3 \\
& ={{x}^{2}}+3x-x-3 \\
& =x(x+3)-(x+3) \\
& =(x-1)(x+3) \\
\end{align}$
Let, g(x)=${{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1+Ax+B$
Now, since 1 and 3 are the zeros of ${{x}^{2}}+2x-3$, thus they should also be zeros of g(x). Thus,
g(1) = 0 -- (1)
g(-3) = 0 -- (2)
From (1),
1+2-2+1-1+A+B=0
1+A+B=0
A+B=-1 -- (3)
From (2),
$-{{3}^{4}}+2{{(-3)}^{3}}-2{{(-3)}^{2}}+(-3)-1+A(-3)+B=0$
5-3A+B = 0 -- (4)
Subtracting (3) from (4), we get,
(5-3A+B) -(A+B) = 0-(-1)
5-4A=1
A=1 -- (5)
Now put this value of A in (3), we get,
1+B=-1
B=-2 -- (6)
Since, the expression to be added was Ax+B, thus, the expression to be added is (x-2).
Hence, we get the same answer as that in the solution.
Complete step-by-step solution:
To explain this method, say we divide 234 by 10. We would then get 23 as the quotient and 4 as the remainder. Thus, we need to add the additive inverse of the remainder (that is -4) from 234 to make it divisible by 10 (Thus, 234 + (-4) = 230, this is now divisible by 10). Now, the long division method is shown below.
${{x}^{2}}$+ 1
${{x}^{2}}+2x-3$ $\left| \!{\overline {\,
{{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1 \,}} \right. $
-$\left( {{x}^{4}}+2{{x}^{3}}-3{{x}^{2}} \right)$
\[\left| \!{\overline {\,
{{x}^{2}}+x-1\text{ } \,}} \right. \]
-$\left( {{x}^{2}}+2x-3 \right)$
\[\]
To understand this, we first write down the divisor (${{x}^{2}}+2x-3$) and dividend $({{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1)$ as shown above. Next we start with the highest power of x and accordingly find the first term of quotient. Thus, in this case since ${{x}^{4}}$ was the highest power term in the dividend, we divide this by the highest term in the divisor (${{x}^{2}}$), thus we get, $\dfrac{{{x}^{4}}}{{{x}^{2}}}={{x}^{4-2}}={{x}^{2}}$.
Next, we multiply ${{x}^{2}}+2x-3$ and ${{x}^{2}}$(first quotient term) to get ${{x}^{4}}+2{{x}^{3}}-3{{x}^{2}}$. Then we subtract ${{x}^{4}}+2{{x}^{3}}-3{{x}^{2}}$ from ${{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1$ (which is similar to the long division method). Finally, we obtain ${{x}^{2}}+x-1$ (from subtraction). We then apply the same technique again (but now, ${{x}^{2}}+x-1$ acts as the dividend). Thus, we divide the highest power of ${{x}^{2}}+x-1$ (that is ${{x}^{2}}$) by the highest power of the divisor. We get, $\dfrac{{{x}^{2}}}{{{x}^{2}}}$=1 (which is the next quotient term). We again multiply the divisor by this term (that is 1) and then perform subtraction to get (-x+2) as the remainder. We stop at this stage since now the highest power of (-x+2) is lower than the divisor itself.
Now, the additive inverse of the remainder is
=-(-x+2)
=x-2
Thus, we need to add (x-2) to ${{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1$ , so that it is divisible by ${{x}^{2}}+2x-3$.
Note: An alternative way to solve this problem would be to assume the expression to be added as Ax+B (we don’t need to have ${{x}^{2}}$ and higher terms here since while assumption we assume the expression with highest order as 1 less than the highest order of the divisor. Thus, in this case since the highest power of divisor is ${{x}^{2}}$, thus, the highest power of expression to be added is x). Now,
$\begin{align}
& ={{x}^{2}}+2x-3 \\
& ={{x}^{2}}+3x-x-3 \\
& =x(x+3)-(x+3) \\
& =(x-1)(x+3) \\
\end{align}$
Let, g(x)=${{x}^{4}}+2{{x}^{3}}-2{{x}^{2}}+x-1+Ax+B$
Now, since 1 and 3 are the zeros of ${{x}^{2}}+2x-3$, thus they should also be zeros of g(x). Thus,
g(1) = 0 -- (1)
g(-3) = 0 -- (2)
From (1),
1+2-2+1-1+A+B=0
1+A+B=0
A+B=-1 -- (3)
From (2),
$-{{3}^{4}}+2{{(-3)}^{3}}-2{{(-3)}^{2}}+(-3)-1+A(-3)+B=0$
5-3A+B = 0 -- (4)
Subtracting (3) from (4), we get,
(5-3A+B) -(A+B) = 0-(-1)
5-4A=1
A=1 -- (5)
Now put this value of A in (3), we get,
1+B=-1
B=-2 -- (6)
Since, the expression to be added was Ax+B, thus, the expression to be added is (x-2).
Hence, we get the same answer as that in the solution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths