
How do you multiply $\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)$?
Answer
541.5k+ views
Hint: Here in this question, we are supposed to perform multiplication for polynomials. One should be aware about different types of polynomials. The rules of integers are also used for solving. The usage of algebraic identities will help to solve this question too.
Complete step-by-step solution:
When more than one term is in an expression it is called a polynomial. As we already know that there are various types of polynomials. First one is monomial, which contains only a single term. Second one is binomial, which contains two terms and third one is trinomial, which contains exactly three terms.
Let us know about the algebraic identities. Algebraic identities are just algebraic equations which stand true for every variable in them. There are various algebraic identities which exist. One of them is
\[\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right) = {x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc\] -----(1)
Now, let us solve the given question.
Given is$\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)$.
Using the algebraic identity shown in equation (1).
\[\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)\]and can be written as$\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)$. Hereby, we can say that\[a = 1,b = 2\]and\[c = 3\].
The terms on right-hand side of the identity in equation (1) are\[\left( {a + b + c} \right)\],\[\left( {ab + bc + ca} \right)\]and\[abc\]. Substituting the values of\[a,b\]and\[c\]in these terms and we get,
\[
\left( {a + b + c} \right) = \left( {1 + 2 + 3} \right) = 6 \\
\left( {ab + bc + ca} \right) = \left( {1 \times 2 + 2 \times 3 + 3 \times 1} \right) = \left( {2 + 6 + 3} \right) = 11 \\
\left( {abc} \right) = \left( {1 \times 2 \times 3} \right) = 6 \\
\]
Using the obtained values, we get,
\[\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) = {x^3} - 6{x^2} + 11x - 6\]
Hence, the answer is\[{x^3} - 6{x^2} + 11x - 6\].
Note: Students are supposed to solve all the like terms until they get all the unlike terms. This will help in reducing the number of terms in the solution. It is always advisable to write terms in a decreasing order of their exponent. The rules of the integers should be taken care of while opening the brackets.
Complete step-by-step solution:
When more than one term is in an expression it is called a polynomial. As we already know that there are various types of polynomials. First one is monomial, which contains only a single term. Second one is binomial, which contains two terms and third one is trinomial, which contains exactly three terms.
Let us know about the algebraic identities. Algebraic identities are just algebraic equations which stand true for every variable in them. There are various algebraic identities which exist. One of them is
\[\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right) = {x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc\] -----(1)
Now, let us solve the given question.
Given is$\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)$.
Using the algebraic identity shown in equation (1).
\[\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)\]and can be written as$\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)$. Hereby, we can say that\[a = 1,b = 2\]and\[c = 3\].
The terms on right-hand side of the identity in equation (1) are\[\left( {a + b + c} \right)\],\[\left( {ab + bc + ca} \right)\]and\[abc\]. Substituting the values of\[a,b\]and\[c\]in these terms and we get,
\[
\left( {a + b + c} \right) = \left( {1 + 2 + 3} \right) = 6 \\
\left( {ab + bc + ca} \right) = \left( {1 \times 2 + 2 \times 3 + 3 \times 1} \right) = \left( {2 + 6 + 3} \right) = 11 \\
\left( {abc} \right) = \left( {1 \times 2 \times 3} \right) = 6 \\
\]
Using the obtained values, we get,
\[\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) = {x^3} - 6{x^2} + 11x - 6\]
Hence, the answer is\[{x^3} - 6{x^2} + 11x - 6\].
Note: Students are supposed to solve all the like terms until they get all the unlike terms. This will help in reducing the number of terms in the solution. It is always advisable to write terms in a decreasing order of their exponent. The rules of the integers should be taken care of while opening the brackets.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

