Answer
Verified
472.2k+ views
Hint: To solve this question, we need to know the basic concepts of arithmetic progression. Here, the first term of the given arithmetic progression is the smallest integer greater than 10 which is a multiple of 4, while the last term would be the largest integer just smaller than 250 which is a multiple of 4. We need to form an arithmetic progression with a common difference as 4. The formula of the ${{n}^{th}}$ term of this series is given by -
${{a}_{n}}$= a + (n-1) d
${{a}_{n}}$= ${{n}^{th}}$ term of this series
a = first term of the series
n = number of terms in the series
d= common difference (4 in this case)
The value of n will give the required answer.
Complete step-by-step solution -
Since, we need to find the arithmetic progression to solve the problem, we first find the first term of the arithmetic progression. Thus, we first start by finding the smallest integer greater than 10 which is a multiple of 4. This is clearly 12 (since, 11 is not multiple of 4 and thus 12 would be the required number). Now, we find the last term. For this we start with 249 (largest number just smaller than 250). Since, this is not a multiple of 4, we then move onto 248. This is in fact a multiple of 4, thus we have found our last term. Since, we have to find the multiple of 4, the common difference is 4. Thus, we have in the equation ${{a}_{n}}$= a + (n-1) d, we have,
${{a}_{n}}$ = 248
a = 12
d = 4
Now, substituting the values, we have,
248 = 12 + 4 (n-1)
(n-1) = $\dfrac{248-12}{4}$
(n-1) = 59
n = 60
Thus, the number of multiples of 4 that lie in between 10 and 250 are 60.
Note: Another way to find the answer between two numbers (say a and b) is by doing the following. We first find the remainder when we divide 250 by 4 (which is 2). We then subtract 2 from 250 to get the last term (250 – 2 = 248) of the arithmetic progression. We then find the remainder when we divide 10 by 4 (which is 2). We then add 2 to 10 (which is 10 + 2=12) to get the first term. Now, we find the answer by using the formula –
$\dfrac{248}{4}-\dfrac{12}{4}+1$ = 62 – 3 + 1 = 60 (which is the same answer as the one in the solutions.)
${{a}_{n}}$= a + (n-1) d
${{a}_{n}}$= ${{n}^{th}}$ term of this series
a = first term of the series
n = number of terms in the series
d= common difference (4 in this case)
The value of n will give the required answer.
Complete step-by-step solution -
Since, we need to find the arithmetic progression to solve the problem, we first find the first term of the arithmetic progression. Thus, we first start by finding the smallest integer greater than 10 which is a multiple of 4. This is clearly 12 (since, 11 is not multiple of 4 and thus 12 would be the required number). Now, we find the last term. For this we start with 249 (largest number just smaller than 250). Since, this is not a multiple of 4, we then move onto 248. This is in fact a multiple of 4, thus we have found our last term. Since, we have to find the multiple of 4, the common difference is 4. Thus, we have in the equation ${{a}_{n}}$= a + (n-1) d, we have,
${{a}_{n}}$ = 248
a = 12
d = 4
Now, substituting the values, we have,
248 = 12 + 4 (n-1)
(n-1) = $\dfrac{248-12}{4}$
(n-1) = 59
n = 60
Thus, the number of multiples of 4 that lie in between 10 and 250 are 60.
Note: Another way to find the answer between two numbers (say a and b) is by doing the following. We first find the remainder when we divide 250 by 4 (which is 2). We then subtract 2 from 250 to get the last term (250 – 2 = 248) of the arithmetic progression. We then find the remainder when we divide 10 by 4 (which is 2). We then add 2 to 10 (which is 10 + 2=12) to get the first term. Now, we find the answer by using the formula –
$\dfrac{248}{4}-\dfrac{12}{4}+1$ = 62 – 3 + 1 = 60 (which is the same answer as the one in the solutions.)
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths