Answer
Verified
490.2k+ views
Hint: Assign variables to mother’s age and son’s age. Write the equations relating to their age in the present and after 8 years and solve them to find the son’s age.
Complete step by step answer:
Let the present age of the mother be x years and the present age of the son be y years.
It is given that a mother is 25 years older than her son. Then, we have:
\[x = y + 25............(1)\]
After eight years, the ratio of son’s age to the mother’s age is 4:9. We know that the age of the mother after 8 years is (x + 8) and the age of the son after 8 years is (y + 8). Hence, we have:
\[\dfrac{{y + 8}}{{x + 8}} = \dfrac{4}{9}............(2)\]
We now have two equations with two unknowns, hence, we substitute equation (1) in equation (2), to obtain the age of the son.
\[\dfrac{{y + 8}}{{(y + 25) + 8}} = \dfrac{4}{9}\]
Simplifying the term in the denominator, we get:
\[\dfrac{{y + 8}}{{y + 33}} = \dfrac{4}{9}\]
Cross-multiplying, we get:
\[9(y + 8) = 4(y + 33)\]
Multiplying inside the brackets, we obtain:
\[9y + 72 = 4y + 132\]
Taking all terms containing y to the left-hand side and all constant terms to the right hand side, we have:
\[9y - 4y = 132 - 72\]
Simplifying, we get:
\[5y = 60\]
Solving for y, we get:
\[y = \dfrac{{60}}{5}\]
\[y = 12\]
Hence, the present age of the son is 12 years.
Note: After you obtain the age of the son, find the age of the mother and substitute in the equations to check if the answer is correct. The key in such questions is to translate the statements of the problem into mathematical statements.
Complete step by step answer:
Let the present age of the mother be x years and the present age of the son be y years.
It is given that a mother is 25 years older than her son. Then, we have:
\[x = y + 25............(1)\]
After eight years, the ratio of son’s age to the mother’s age is 4:9. We know that the age of the mother after 8 years is (x + 8) and the age of the son after 8 years is (y + 8). Hence, we have:
\[\dfrac{{y + 8}}{{x + 8}} = \dfrac{4}{9}............(2)\]
We now have two equations with two unknowns, hence, we substitute equation (1) in equation (2), to obtain the age of the son.
\[\dfrac{{y + 8}}{{(y + 25) + 8}} = \dfrac{4}{9}\]
Simplifying the term in the denominator, we get:
\[\dfrac{{y + 8}}{{y + 33}} = \dfrac{4}{9}\]
Cross-multiplying, we get:
\[9(y + 8) = 4(y + 33)\]
Multiplying inside the brackets, we obtain:
\[9y + 72 = 4y + 132\]
Taking all terms containing y to the left-hand side and all constant terms to the right hand side, we have:
\[9y - 4y = 132 - 72\]
Simplifying, we get:
\[5y = 60\]
Solving for y, we get:
\[y = \dfrac{{60}}{5}\]
\[y = 12\]
Hence, the present age of the son is 12 years.
Note: After you obtain the age of the son, find the age of the mother and substitute in the equations to check if the answer is correct. The key in such questions is to translate the statements of the problem into mathematical statements.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Discuss the main reasons for poverty in India
Why is monsoon considered a unifying bond class 10 social science CBSE
A Paragraph on Pollution in about 100-150 Words
Why does India have a monsoon type of climate class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain Anti-Poverty measures taken by the Government of India