Answer

Verified

449.4k+ views

Hint: The question is related to the linear equation in two variables. Try to make two equations using the information given in the problem statement and solve them simultaneously.

Complete step-by-step answer:

Complete step-by-step answer: In the question, it is given that Meena withdrew \[Rs.2000\] from a bank in the form of notes of $Rs.50$ and $Rs.100$. It is also given that she got $25$ notes in all. So, we will consider $x$ as the number of $Rs.50$ notes received by Meena and $y$ as the number of $Rs.100$ notes received by Meena.

Now, in the first case, it is given that Meena withdrew \[Rs.2000\] from a bank in the form of notes of $Rs.50$ and $Rs.100$. So, the amount in the form of $Rs.50$ notes is equal to $50\times x=Rs.50x$. Also, the amount in the form of $Rs.100$ notes is equal to $100\times y=Rs.100y$. So, the total amount will be $Rs.\left( 50x+100y \right)$. But it is given that the total amount withdrawn is \[Rs.2000\]. So,

$50x+100y=2000..........(i)$

Now, we have considered $x$ as the number of $Rs.50$ notes received by Meena and $y$ as the number of $Rs.100$ notes received by Meena. So, the total number of notes will be equal to $x+y$. But it is given that the total number of notes is equal to $25$. So,

$x+y=25.....(ii)$

Now, we will solve the linear equations to find the values of $x$ and $y$.

From equation$(ii)$, we have $x+y=25$

$\Rightarrow y=25-x$

On substituting $y=25-x$ in equation$(i)$, we get

$50x+100\left( 25-x \right)=2000$

$\Rightarrow 50x+2500-100x=2000$

$\Rightarrow 500-50x=0$

$\Rightarrow 50x=500$

$\Rightarrow x=10$

Now, substituting \[x=10\] in equation$(ii)$, we get

$10+y=25$

\[\Rightarrow y=15\]

Hence, the numbers of $Rs.50$ notes and \[Rs.100\] notes that are received by Meena from the cashier are $10$ and $15$ respectively.

Note: While solving this question we can assume the number of RS.50 notes as x and RS.100 notes as (25-x). By this substitution we get a linear equation in one variable. We can find the value of x by solving the linear equation in one variable.

Complete step-by-step answer:

Complete step-by-step answer: In the question, it is given that Meena withdrew \[Rs.2000\] from a bank in the form of notes of $Rs.50$ and $Rs.100$. It is also given that she got $25$ notes in all. So, we will consider $x$ as the number of $Rs.50$ notes received by Meena and $y$ as the number of $Rs.100$ notes received by Meena.

Now, in the first case, it is given that Meena withdrew \[Rs.2000\] from a bank in the form of notes of $Rs.50$ and $Rs.100$. So, the amount in the form of $Rs.50$ notes is equal to $50\times x=Rs.50x$. Also, the amount in the form of $Rs.100$ notes is equal to $100\times y=Rs.100y$. So, the total amount will be $Rs.\left( 50x+100y \right)$. But it is given that the total amount withdrawn is \[Rs.2000\]. So,

$50x+100y=2000..........(i)$

Now, we have considered $x$ as the number of $Rs.50$ notes received by Meena and $y$ as the number of $Rs.100$ notes received by Meena. So, the total number of notes will be equal to $x+y$. But it is given that the total number of notes is equal to $25$. So,

$x+y=25.....(ii)$

Now, we will solve the linear equations to find the values of $x$ and $y$.

From equation$(ii)$, we have $x+y=25$

$\Rightarrow y=25-x$

On substituting $y=25-x$ in equation$(i)$, we get

$50x+100\left( 25-x \right)=2000$

$\Rightarrow 50x+2500-100x=2000$

$\Rightarrow 500-50x=0$

$\Rightarrow 50x=500$

$\Rightarrow x=10$

Now, substituting \[x=10\] in equation$(ii)$, we get

$10+y=25$

\[\Rightarrow y=15\]

Hence, the numbers of $Rs.50$ notes and \[Rs.100\] notes that are received by Meena from the cashier are $10$ and $15$ respectively.

Note: While solving this question we can assume the number of RS.50 notes as x and RS.100 notes as (25-x). By this substitution we get a linear equation in one variable. We can find the value of x by solving the linear equation in one variable.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE