Answer
Verified
445.5k+ views
Hint: In order to solve this problem we will find the volume of both the blocks and assume that n number of boxes gets fitted into the big box then we will equate the volume of n number of boxes with the bigger volume to get the value of n. Doing this will solve your problem and will give you the right answer.
Complete step-by-step solution:
It is given that,
Dimensions of the Rectangular block are (l, b, h) = (3, 2, 1).
And that is the length of an edge of the cube-shaped box = 6.
To find the maximum number of such rectangular blocks that can be packed into the above cube-shaped box;
Let ′n′ be the maximum number of rectangular blocks.
The volume of ′n′ rectangular blocks
$ \Rightarrow n ×l × b × h$.
$ \Rightarrow n ×3 × 2 × 1$
$ \Rightarrow 6 × n$
Volume of the above cube of side (s=6) = ${s^3}$ = ${6^3}$
Equating the volume of the above, we get
$ \Rightarrow 6 × n = ${6^3}$
$ \Rightarrow n = {6^2}$
$ \Rightarrow n = 36$
Therefore, the maximum number of such rectangular blocks that can be packed into the above cube-shaped box is ′36′.
Note: When you get to solve such problems you need to know that a cube is a three-dimensional solid object bounded by six square faces, facets, or sides, with three meetings at each vertex whereas cuboid is a 3D shape. Cuboids have six faces, which form a convex polyhedron. Broadly, the faces of the cuboid can be any quadrilateral. Whenever you need to calculate the number of small things fitted in a big thing then you have to assume the variables and get the total volume and get the value of the variable to get the number. Doing this will give you the right answers.
Complete step-by-step solution:
It is given that,
Dimensions of the Rectangular block are (l, b, h) = (3, 2, 1).
And that is the length of an edge of the cube-shaped box = 6.
To find the maximum number of such rectangular blocks that can be packed into the above cube-shaped box;
Let ′n′ be the maximum number of rectangular blocks.
The volume of ′n′ rectangular blocks
$ \Rightarrow n ×l × b × h$.
$ \Rightarrow n ×3 × 2 × 1$
$ \Rightarrow 6 × n$
Volume of the above cube of side (s=6) = ${s^3}$ = ${6^3}$
Equating the volume of the above, we get
$ \Rightarrow 6 × n = ${6^3}$
$ \Rightarrow n = {6^2}$
$ \Rightarrow n = 36$
Therefore, the maximum number of such rectangular blocks that can be packed into the above cube-shaped box is ′36′.
Note: When you get to solve such problems you need to know that a cube is a three-dimensional solid object bounded by six square faces, facets, or sides, with three meetings at each vertex whereas cuboid is a 3D shape. Cuboids have six faces, which form a convex polyhedron. Broadly, the faces of the cuboid can be any quadrilateral. Whenever you need to calculate the number of small things fitted in a big thing then you have to assume the variables and get the total volume and get the value of the variable to get the number. Doing this will give you the right answers.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE