
Mark the correct alternative of the following.
If the number 2345 a 60b is exactly divisible by 3 and 5, then the maximum value of $a+b$is?
(a) 12
(b) 13
(c) 14
(d) 15
Answer
603.3k+ views
Hint: We can use the divisibility rule for the numbers 3 and 5 to solve this question. In the case of number 5, the value of b can only be either 0 or 5. Similarly, we can apply conditions for number 3 also and get to a conclusion.
Complete step-by-step answer:
Before proceeding we should know the divisibility rule of 3 as well as 5. These are as follows:
Divisibility rule of 3: A number is divisible by 3 if and only if the sum of the digits of a number is divisible by 3.
Divisibility rule of 5: A number is divisible by 5 if and only if the last digit of a number is either 0 or 5.
Therefore, the number 2345 a 60b is divisible by 5 only if the value of $b=0\text{ or 5}$.
We have to take the value of b as 5 as we have been asked the maximum value of $a+b$.
Then the sum of the digits of the given number 2345 a 60b is $25+a$.
Therefore, the numbers greater than 25 and divisible by 3 are 20, 30, 35.
Hence, the value of a maybe 2, 5, 8 .
By comparing, the possible values of a, we get that the maximum value of $a=8$
Therefore, we have $a=8,b=5$.
Hence, the maximum value of $a+b$ is $13$.
Hence, the answer is option (b).
Note: Always remember we have been asked for the maximum value of $a+b$, therefore for the number to be divisible by 5, the last digit must be 5 not 0 as we have been asked the maximum value of $a+b$. Make sure that after getting the maximum values of $a+b$, check at least once the number is divisible by both 3 and 5.
Complete step-by-step answer:
Before proceeding we should know the divisibility rule of 3 as well as 5. These are as follows:
Divisibility rule of 3: A number is divisible by 3 if and only if the sum of the digits of a number is divisible by 3.
Divisibility rule of 5: A number is divisible by 5 if and only if the last digit of a number is either 0 or 5.
Therefore, the number 2345 a 60b is divisible by 5 only if the value of $b=0\text{ or 5}$.
We have to take the value of b as 5 as we have been asked the maximum value of $a+b$.
Then the sum of the digits of the given number 2345 a 60b is $25+a$.
Therefore, the numbers greater than 25 and divisible by 3 are 20, 30, 35.
Hence, the value of a maybe 2, 5, 8 .
By comparing, the possible values of a, we get that the maximum value of $a=8$
Therefore, we have $a=8,b=5$.
Hence, the maximum value of $a+b$ is $13$.
Hence, the answer is option (b).
Note: Always remember we have been asked for the maximum value of $a+b$, therefore for the number to be divisible by 5, the last digit must be 5 not 0 as we have been asked the maximum value of $a+b$. Make sure that after getting the maximum values of $a+b$, check at least once the number is divisible by both 3 and 5.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

Discuss the main reasons for poverty in India

