
Mark the correct alternative of the following.
If the number 2345 a 60b is exactly divisible by 3 and 5, then the maximum value of $a+b$is?
(a) 12
(b) 13
(c) 14
(d) 15
Answer
620.4k+ views
Hint: We can use the divisibility rule for the numbers 3 and 5 to solve this question. In the case of number 5, the value of b can only be either 0 or 5. Similarly, we can apply conditions for number 3 also and get to a conclusion.
Complete step-by-step answer:
Before proceeding we should know the divisibility rule of 3 as well as 5. These are as follows:
Divisibility rule of 3: A number is divisible by 3 if and only if the sum of the digits of a number is divisible by 3.
Divisibility rule of 5: A number is divisible by 5 if and only if the last digit of a number is either 0 or 5.
Therefore, the number 2345 a 60b is divisible by 5 only if the value of $b=0\text{ or 5}$.
We have to take the value of b as 5 as we have been asked the maximum value of $a+b$.
Then the sum of the digits of the given number 2345 a 60b is $25+a$.
Therefore, the numbers greater than 25 and divisible by 3 are 20, 30, 35.
Hence, the value of a maybe 2, 5, 8 .
By comparing, the possible values of a, we get that the maximum value of $a=8$
Therefore, we have $a=8,b=5$.
Hence, the maximum value of $a+b$ is $13$.
Hence, the answer is option (b).
Note: Always remember we have been asked for the maximum value of $a+b$, therefore for the number to be divisible by 5, the last digit must be 5 not 0 as we have been asked the maximum value of $a+b$. Make sure that after getting the maximum values of $a+b$, check at least once the number is divisible by both 3 and 5.
Complete step-by-step answer:
Before proceeding we should know the divisibility rule of 3 as well as 5. These are as follows:
Divisibility rule of 3: A number is divisible by 3 if and only if the sum of the digits of a number is divisible by 3.
Divisibility rule of 5: A number is divisible by 5 if and only if the last digit of a number is either 0 or 5.
Therefore, the number 2345 a 60b is divisible by 5 only if the value of $b=0\text{ or 5}$.
We have to take the value of b as 5 as we have been asked the maximum value of $a+b$.
Then the sum of the digits of the given number 2345 a 60b is $25+a$.
Therefore, the numbers greater than 25 and divisible by 3 are 20, 30, 35.
Hence, the value of a maybe 2, 5, 8 .
By comparing, the possible values of a, we get that the maximum value of $a=8$
Therefore, we have $a=8,b=5$.
Hence, the maximum value of $a+b$ is $13$.
Hence, the answer is option (b).
Note: Always remember we have been asked for the maximum value of $a+b$, therefore for the number to be divisible by 5, the last digit must be 5 not 0 as we have been asked the maximum value of $a+b$. Make sure that after getting the maximum values of $a+b$, check at least once the number is divisible by both 3 and 5.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

