List all events associated with the random experiment of tossing of two coins. How many of them are elementary events ?
Last updated date: 26th Mar 2023
•
Total views: 309.9k
•
Views today: 6.86k
Answer
309.9k+ views
Hint: First, find out the sample space that contains all the possible outcomes of this random
experiment. Then proceed on to finding which of them are elementary events. Elementary events are
events that aren’t subsets derived from any other events related to the random experiment.
Let’s first analyse the experiment given to us. The experiment is the tossing of two coins, simultaneously.
Now, since the two coins are tossed simultaneously, there can be outcomes of heads or tails for both
the coins.
However, the outcomes of both the coins together will be considered as a possibility.
This tells us, that the possibilities are as follows :
1. The first coin shows heads, and the second coin shows heads too.
2. The first coin shows heads, and the second coin shows tails.
3. The first coin shows tails, and the second coin shows heads.
4. The first coin shows tails, and the second coin shows tails as well.
Therefore, these are all the possible outcomes. All these possible outcomes will form the sample space
for this event.
Thus, the sample space S for this event can be written as follows :
$S=\{(H,H),(H,T),(T,H),(T,T)\}$
Thus, these four outcomes are all the possibilities that can come out of tossing two coins.
Now, the next part of the question asks us how many of these events are elementary. For this, we first
need to understand what exactly is an elementary event.
An elementary event is an event, which is not derived from any other event. For example, here, our
possible events are the sample space $S$, as shown. However, we can derive more subsets from the
sample space $S$, which contains the sample space, using set theory.
Therefore, all the events in the sample space $S$ are called elementary events. Hence, all four of the
possible outcomes are elementary events in this case.
The possible outcomes are $S=\{(H,H),(H,T),(T,H),(T,T)\}$, and all the events in $S$ are elementary
events.
Note: To understand the concept of elementary events better, consider the tossing of a single coin. The
sample space for the tossing of a single coin is $S=\{(H),(T)\}$ since we are only tossing one coin.
However, from here can derive four subsets, using set theory. Therefore, the subsets of $S$ are : {H}, {T},
{H,T}, and $\phi $. The number of subsets that are derived from a sample space $S$ = ${{2}^{n}}$, where
$n$ is the number of elements in the sample space $S$.
Hence, elementary events are the events that are the possible outcomes of a random experiment, and
are not the subsets of any other outcomes of the experiment.
experiment. Then proceed on to finding which of them are elementary events. Elementary events are
events that aren’t subsets derived from any other events related to the random experiment.
Let’s first analyse the experiment given to us. The experiment is the tossing of two coins, simultaneously.
Now, since the two coins are tossed simultaneously, there can be outcomes of heads or tails for both
the coins.
However, the outcomes of both the coins together will be considered as a possibility.
This tells us, that the possibilities are as follows :
1. The first coin shows heads, and the second coin shows heads too.
2. The first coin shows heads, and the second coin shows tails.
3. The first coin shows tails, and the second coin shows heads.
4. The first coin shows tails, and the second coin shows tails as well.
Therefore, these are all the possible outcomes. All these possible outcomes will form the sample space
for this event.
Thus, the sample space S for this event can be written as follows :
$S=\{(H,H),(H,T),(T,H),(T,T)\}$
Thus, these four outcomes are all the possibilities that can come out of tossing two coins.
Now, the next part of the question asks us how many of these events are elementary. For this, we first
need to understand what exactly is an elementary event.
An elementary event is an event, which is not derived from any other event. For example, here, our
possible events are the sample space $S$, as shown. However, we can derive more subsets from the
sample space $S$, which contains the sample space, using set theory.
Therefore, all the events in the sample space $S$ are called elementary events. Hence, all four of the
possible outcomes are elementary events in this case.
The possible outcomes are $S=\{(H,H),(H,T),(T,H),(T,T)\}$, and all the events in $S$ are elementary
events.
Note: To understand the concept of elementary events better, consider the tossing of a single coin. The
sample space for the tossing of a single coin is $S=\{(H),(T)\}$ since we are only tossing one coin.
However, from here can derive four subsets, using set theory. Therefore, the subsets of $S$ are : {H}, {T},
{H,T}, and $\phi $. The number of subsets that are derived from a sample space $S$ = ${{2}^{n}}$, where
$n$ is the number of elements in the sample space $S$.
Hence, elementary events are the events that are the possible outcomes of a random experiment, and
are not the subsets of any other outcomes of the experiment.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
