Answer
Verified
494.4k+ views
Hint: Take any two variables, find their A.M (Arithmetic Mean) and G.M (Geometric Mean) accordingly and then simplify them.
Complete step-by-step answer:
Let $x$ and $y$ be the two numbers whose A.M is $A$ and G.M is $G$ respectively
i.e. $x = A + \sqrt {\left( {A + G} \right)\left( {A - G} \right)} $
$y = A - \sqrt {\left( {A + G} \right)\left( {A - G} \right)} $
where \[A = \dfrac{{x + y}}{2}\] and \[G = \sqrt {xy} \]
Now solving $A \pm \sqrt {\left( {A + G} \right)\left( {A - G} \right)} $
$ = \left( {\dfrac{{x + y}}{2}} \right) \pm \sqrt {{{\left( {\dfrac{{x + y}}{{\text{2}}}} \right)}^2} - {{\left( {\sqrt {xy} } \right)}^2}} $
Expanding terms inside the square root
\[
\\
= \left( {\dfrac{{x + y}}{2}} \right) \pm \sqrt {\left( {\dfrac{{{x^2} + {y^2} + 2xy}}{4}} \right) - \left( {xy} \right)} \\
= \left( {\dfrac{{x + y}}{2}} \right) \pm \sqrt {\dfrac{{{x^2} + {y^2} + 2xy - 4xy}}{4}} \\
= \left( {\dfrac{{x + y}}{{\text{2}}}} \right) \pm \sqrt {\dfrac{{{x^2} + {y^2} - 2xy}}{4}} \\
= \left( {\dfrac{{x + y}}{{\text{2}}}} \right) \pm \sqrt {{{\left( {\dfrac{{x - y}}{{\text{2}}}} \right)}^2}} \\
= \left( {\dfrac{{x + y}}{2}} \right) \pm \left( {\dfrac{{x - y}}{{\text{2}}}} \right) \\
\]
First let’s consider the positive sign, we get
\[
= \left( {\dfrac{{x + y}}{{\text{2}}}} \right) + \left( {\dfrac{{x - y}}{{\text{2}}}} \right) \\
= \dfrac{x}{2} + \dfrac{y}{2} + \dfrac{x}{2} - \dfrac{y}{2} \\
= \dfrac{x}{2} + \dfrac{x}{2} \\
= x \\
\]
Now let’s consider the negative sign, we get
\[
= \left( {\dfrac{{x + y}}{{\text{2}}}} \right) - \left( {\dfrac{{x - y}}{{\text{2}}}} \right) \\
= \dfrac{x}{2} + \dfrac{y}{2} - \dfrac{x}{2} + \dfrac{y}{2} \\
= \dfrac{y}{2} + \dfrac{y}{2} \\
= y \\
\]
Thus, \[x = A + \sqrt {\left( {A + G} \right)(A - G)} \]
\[y = A - \sqrt {\left( {A + G} \right)(A - G)} \]
Hence proved.
Note: In these types of problems, assume required variables to arrive at the solution. Always remember that the Arithmetic Mean of a list of non-negative real numbers is greater than or equal to the Geometric Mean of the same list i.e. \[\dfrac{{x + y}}{{\text{2}}} \geqslant \sqrt {xy} \].
Complete step-by-step answer:
Let $x$ and $y$ be the two numbers whose A.M is $A$ and G.M is $G$ respectively
i.e. $x = A + \sqrt {\left( {A + G} \right)\left( {A - G} \right)} $
$y = A - \sqrt {\left( {A + G} \right)\left( {A - G} \right)} $
where \[A = \dfrac{{x + y}}{2}\] and \[G = \sqrt {xy} \]
Now solving $A \pm \sqrt {\left( {A + G} \right)\left( {A - G} \right)} $
$ = \left( {\dfrac{{x + y}}{2}} \right) \pm \sqrt {{{\left( {\dfrac{{x + y}}{{\text{2}}}} \right)}^2} - {{\left( {\sqrt {xy} } \right)}^2}} $
Expanding terms inside the square root
\[
\\
= \left( {\dfrac{{x + y}}{2}} \right) \pm \sqrt {\left( {\dfrac{{{x^2} + {y^2} + 2xy}}{4}} \right) - \left( {xy} \right)} \\
= \left( {\dfrac{{x + y}}{2}} \right) \pm \sqrt {\dfrac{{{x^2} + {y^2} + 2xy - 4xy}}{4}} \\
= \left( {\dfrac{{x + y}}{{\text{2}}}} \right) \pm \sqrt {\dfrac{{{x^2} + {y^2} - 2xy}}{4}} \\
= \left( {\dfrac{{x + y}}{{\text{2}}}} \right) \pm \sqrt {{{\left( {\dfrac{{x - y}}{{\text{2}}}} \right)}^2}} \\
= \left( {\dfrac{{x + y}}{2}} \right) \pm \left( {\dfrac{{x - y}}{{\text{2}}}} \right) \\
\]
First let’s consider the positive sign, we get
\[
= \left( {\dfrac{{x + y}}{{\text{2}}}} \right) + \left( {\dfrac{{x - y}}{{\text{2}}}} \right) \\
= \dfrac{x}{2} + \dfrac{y}{2} + \dfrac{x}{2} - \dfrac{y}{2} \\
= \dfrac{x}{2} + \dfrac{x}{2} \\
= x \\
\]
Now let’s consider the negative sign, we get
\[
= \left( {\dfrac{{x + y}}{{\text{2}}}} \right) - \left( {\dfrac{{x - y}}{{\text{2}}}} \right) \\
= \dfrac{x}{2} + \dfrac{y}{2} - \dfrac{x}{2} + \dfrac{y}{2} \\
= \dfrac{y}{2} + \dfrac{y}{2} \\
= y \\
\]
Thus, \[x = A + \sqrt {\left( {A + G} \right)(A - G)} \]
\[y = A - \sqrt {\left( {A + G} \right)(A - G)} \]
Hence proved.
Note: In these types of problems, assume required variables to arrive at the solution. Always remember that the Arithmetic Mean of a list of non-negative real numbers is greater than or equal to the Geometric Mean of the same list i.e. \[\dfrac{{x + y}}{{\text{2}}} \geqslant \sqrt {xy} \].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it