Answer
Verified
390.3k+ views
Hint: Here in this question, we have to find the value of the function \[2f\left( 0 \right) + 3f\left( 1 \right)\] by using \[f\left( x \right) + \left( {x + \dfrac{1}{2}} \right)f\left( {1 - x} \right) = 1\]. To solve this first we have to find the value of \[f\left( 0 \right)\] and \[f\left( 1 \right)\] by giving the value of \[x = 0\] and \[x = 1\] to the function \[f\left( x \right) + \left( {x + \dfrac{1}{2}} \right)f\left( {1 - x} \right) = 1\] and further substitute these values in required function \[2f\left( 0 \right) + 3f\left( 1 \right)\] on simplification we get the required solution.
Complete step by step solution:
Given that let f be a function R to R i.e., \[f:R \to R\] where R be a set of all real numbers.
Consider the function
\[ \Rightarrow f\left( x \right) + \left( {x + \dfrac{1}{2}} \right)f\left( {1 - x} \right) = 1\]--------(1)
Now, find the values of \[f\left( 0 \right)\] and \[f\left( 1 \right)\].
Let, \[x = 0\], then equation (1) becomes
\[ \Rightarrow f\left( 0 \right) + \left( {0 + \dfrac{1}{2}} \right)f\left( {1 - 0} \right) = 1\]
On simplification, we get
\[ \Rightarrow f\left( 0 \right) + \dfrac{1}{2}f\left( 1 \right) = 1\]------(2)
When \[x = 1\], then equation (1) becomes
\[ \Rightarrow f\left( 1 \right) + \left( {1 + \dfrac{1}{2}} \right)f\left( {1 - 1} \right) = 1\]
On simplification, we get
\[ \Rightarrow f\left( 1 \right) + \dfrac{3}{2}f\left( 0 \right) = 1\]--------(3)
Multiplying equation (2) by 2 and subtracting equation (3) from that, we have
\[ \Rightarrow 2\left( {f\left( 0 \right) + \dfrac{1}{2}f\left( 1 \right)} \right) - \left( {f\left( 1 \right) + \dfrac{3}{2}f\left( 0 \right)} \right) = 2\left( 1 \right) - 1\]
\[ \Rightarrow 2f\left( 0 \right) + f\left( 1 \right) - f\left( 1 \right) - \dfrac{3}{2}f\left( 0 \right) = 2 - 1\]
On simplification, we have
\[ \Rightarrow 2f\left( 0 \right) - \dfrac{3}{2}f\left( 0 \right) = 1\]
Take 2 as LCM in LHS, then
\[ \Rightarrow \dfrac{{4f\left( 0 \right) - 3f\left( 0 \right)}}{2} = 1\]
\[ \Rightarrow \dfrac{{f\left( 0 \right)}}{2} = 1\]
Multiply 2 by both side, then
\[ \Rightarrow f\left( 0 \right) = 2\]
Substitute, the value of \[f\left( 0 \right)\] in equation (3), we have
\[ \Rightarrow f\left( 1 \right) + \dfrac{3}{2}\left( 2 \right) = 1\]
\[ \Rightarrow f\left( 1 \right) + 3 = 1\]
Subtract, both side by 3, then
\[ \Rightarrow f\left( 1 \right) = 1 - 3\]
\[ \Rightarrow f\left( 1 \right) = - 2\]
Now, consider the given equation
\[ \Rightarrow 2f\left( 0 \right) + 3f\left( 1 \right)\]
Substitute the value of \[f\left( 0 \right)\] and \[f\left( 1 \right)\], then
\[ \Rightarrow 2\left( 2 \right) + 3\left( { - 2} \right)\]
\[ \Rightarrow 4 - 6\]
\[ \Rightarrow - 2\]
Hence, The value of \[2f\left( 0 \right) + 3f\left( 1 \right) = - 2\].
Therefore, option (C) is correct.
So, the correct answer is “Option C”.
Note: The function is an image of the domain value. To solve these kinds of problems the student must know the tables of multiplication and the simple arithmetic operations. in some of the questions the function term will be given directly. Like these kinds of problems we have to try to simplify.
Complete step by step solution:
Given that let f be a function R to R i.e., \[f:R \to R\] where R be a set of all real numbers.
Consider the function
\[ \Rightarrow f\left( x \right) + \left( {x + \dfrac{1}{2}} \right)f\left( {1 - x} \right) = 1\]--------(1)
Now, find the values of \[f\left( 0 \right)\] and \[f\left( 1 \right)\].
Let, \[x = 0\], then equation (1) becomes
\[ \Rightarrow f\left( 0 \right) + \left( {0 + \dfrac{1}{2}} \right)f\left( {1 - 0} \right) = 1\]
On simplification, we get
\[ \Rightarrow f\left( 0 \right) + \dfrac{1}{2}f\left( 1 \right) = 1\]------(2)
When \[x = 1\], then equation (1) becomes
\[ \Rightarrow f\left( 1 \right) + \left( {1 + \dfrac{1}{2}} \right)f\left( {1 - 1} \right) = 1\]
On simplification, we get
\[ \Rightarrow f\left( 1 \right) + \dfrac{3}{2}f\left( 0 \right) = 1\]--------(3)
Multiplying equation (2) by 2 and subtracting equation (3) from that, we have
\[ \Rightarrow 2\left( {f\left( 0 \right) + \dfrac{1}{2}f\left( 1 \right)} \right) - \left( {f\left( 1 \right) + \dfrac{3}{2}f\left( 0 \right)} \right) = 2\left( 1 \right) - 1\]
\[ \Rightarrow 2f\left( 0 \right) + f\left( 1 \right) - f\left( 1 \right) - \dfrac{3}{2}f\left( 0 \right) = 2 - 1\]
On simplification, we have
\[ \Rightarrow 2f\left( 0 \right) - \dfrac{3}{2}f\left( 0 \right) = 1\]
Take 2 as LCM in LHS, then
\[ \Rightarrow \dfrac{{4f\left( 0 \right) - 3f\left( 0 \right)}}{2} = 1\]
\[ \Rightarrow \dfrac{{f\left( 0 \right)}}{2} = 1\]
Multiply 2 by both side, then
\[ \Rightarrow f\left( 0 \right) = 2\]
Substitute, the value of \[f\left( 0 \right)\] in equation (3), we have
\[ \Rightarrow f\left( 1 \right) + \dfrac{3}{2}\left( 2 \right) = 1\]
\[ \Rightarrow f\left( 1 \right) + 3 = 1\]
Subtract, both side by 3, then
\[ \Rightarrow f\left( 1 \right) = 1 - 3\]
\[ \Rightarrow f\left( 1 \right) = - 2\]
Now, consider the given equation
\[ \Rightarrow 2f\left( 0 \right) + 3f\left( 1 \right)\]
Substitute the value of \[f\left( 0 \right)\] and \[f\left( 1 \right)\], then
\[ \Rightarrow 2\left( 2 \right) + 3\left( { - 2} \right)\]
\[ \Rightarrow 4 - 6\]
\[ \Rightarrow - 2\]
Hence, The value of \[2f\left( 0 \right) + 3f\left( 1 \right) = - 2\].
Therefore, option (C) is correct.
So, the correct answer is “Option C”.
Note: The function is an image of the domain value. To solve these kinds of problems the student must know the tables of multiplication and the simple arithmetic operations. in some of the questions the function term will be given directly. Like these kinds of problems we have to try to simplify.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE