Let f(x) = $\alpha {{x}^{2}}-2+\dfrac{1}{x}$ where $\alpha $ is a real constant. The smallest $\alpha $ for which f(x)$\ge $0 for all x>0 is ?
(a) $\dfrac{{{2}^{2}}}{{{3}^{3}}}$
(b) $\dfrac{{{2}^{3}}}{{{3}^{3}}}$
(c) $\dfrac{{{2}^{4}}}{{{3}^{3}}}$
(d) $\dfrac{{{2}^{5}}}{{{3}^{3}}}$
Answer
362.1k+ views
Hint: To solve the above problem, we need to be aware about the basic concepts of the extremum (that is, minimum and maximum) of a function. We will use the principle of derivatives to solve this function. We will use the property that for minimum, we have,
f’(x) = 0 and f’’(x) > 0 [Here, f’(x) is same as $\dfrac{d}{dx}\left( f(x) \right)$ and f’’(x) is same as $\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( f(x) \right)$.
Complete step by step answer:
Now, before solving we try to understand the basics about extremum points. Basically, an extremum is a point of a function at which it has the highest (maximum) or lowest (minimum) value. In general, these points occur where there is a change in sign of the slope of the graph at that point. For example, we take a simple case of f(x) = ${{x}^{2}}$. Here, we see that the sign of the slope changes when we cross x=0. Thus, x = 0 is an extremum point. Now, we try to solve the problem in hand keeping above points in mind.
We have, f(x) = $\alpha {{x}^{2}}-2+\dfrac{1}{x}$. Now, to find extremum point, in general, we perform f’(x) = 0 [f’(x) is same as $\dfrac{d}{dx}\left( f(x) \right)$]
We know that, $\dfrac{d({{x}^{2}})}{dx}=2x,\text{ }\dfrac{d(\text{constant})}{dx}=0,\text{ }\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=-\dfrac{1}{{{x}^{2}}}$, thus, we get,
f’(x) = $2\alpha x-\dfrac{1}{{{x}^{2}}}$ -- (1)
We equate this to zero, we get,
$2\alpha x-\dfrac{1}{{{x}^{2}}}$=0
$\begin{align}
& 2\alpha x=\dfrac{1}{{{x}^{2}}} \\
& {{x}^{3}}=\dfrac{1}{2\alpha } \\
& x={{\left( \dfrac{1}{2\alpha } \right)}^{\dfrac{1}{3}}} \\
\end{align}$
Now, we want this point to be minimum since, we have to find the smallest $\alpha $, we have another condition,
f’’(x) > 0
Using $\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)=-\dfrac{2}{{{x}^{3}}}$, thus doing derivative of (1), we have,
f’’(x) = 2$\alpha $- ($-\dfrac{2}{{{x}^{3}}}$)
f’’(x) = 2$\alpha $+$\dfrac{2}{{{x}^{3}}}$
Now, in the question, for f’’(x) to be greater than zero, we have,
2$\alpha $+$\dfrac{2}{{{x}^{3}}}$> 0
$\alpha $> $-\dfrac{1}{{{x}^{3}}}$ - (2)
Now, we try to satisfy, f(x)$\ge $0 for $x={{\left( \dfrac{1}{2\alpha } \right)}^{\dfrac{1}{3}}}$,
thus, we have,
f${{\left( \dfrac{1}{2\alpha } \right)}^{\dfrac{1}{3}}}$$\ge $0
\[\begin{align}
& \alpha {{\left( \dfrac{1}{2\alpha } \right)}^{\dfrac{2}{3}}}-2+{{\left( \dfrac{1}{2\alpha }
\right)}^{-\dfrac{1}{3}}}\ge 0 \\
& {{\alpha }^{\dfrac{1}{3}}}{{2}^{-\dfrac{2}{3}}}-2+{{2}^{\dfrac{1}{3}}}{{\alpha }^{\dfrac{1}{3}}}\ge 0 \\
& {{\alpha }^{\dfrac{1}{3}}}\left( \dfrac{1+2}{{{2}^{\dfrac{2}{3}}}} \right)-2\ge 0 \\
\end{align}\]
\[\begin{align}
& {{\alpha }^{\dfrac{1}{3}}}\left( \dfrac{3}{{{2}^{\dfrac{2}{3}}}} \right)\ge 2 \\
& {{\alpha }^{\dfrac{1}{3}}}\ge \dfrac{{{2}^{\dfrac{5}{3}}}}{3} \\
& \alpha \ge \dfrac{{{2}^{5}}}{{{3}^{3}}} \\
\end{align}\]
Thus, the minimum value of \[\alpha =\dfrac{{{2}^{5}}}{{{3}^{3}}}\].
Hence, the correct answer (d).
Note: We found the minimum of the function, since we had to find the minimum value of $\alpha $ for f(x) to be just greater than or equal to zero. Further, it is important to keep in mind the range of x while arriving at the answer. For example, in the question, it is given that x>0, thus, if we get an extremum point which is negative, we reject that point.
f’(x) = 0 and f’’(x) > 0 [Here, f’(x) is same as $\dfrac{d}{dx}\left( f(x) \right)$ and f’’(x) is same as $\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( f(x) \right)$.
Complete step by step answer:
Now, before solving we try to understand the basics about extremum points. Basically, an extremum is a point of a function at which it has the highest (maximum) or lowest (minimum) value. In general, these points occur where there is a change in sign of the slope of the graph at that point. For example, we take a simple case of f(x) = ${{x}^{2}}$. Here, we see that the sign of the slope changes when we cross x=0. Thus, x = 0 is an extremum point. Now, we try to solve the problem in hand keeping above points in mind.
We have, f(x) = $\alpha {{x}^{2}}-2+\dfrac{1}{x}$. Now, to find extremum point, in general, we perform f’(x) = 0 [f’(x) is same as $\dfrac{d}{dx}\left( f(x) \right)$]
We know that, $\dfrac{d({{x}^{2}})}{dx}=2x,\text{ }\dfrac{d(\text{constant})}{dx}=0,\text{ }\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=-\dfrac{1}{{{x}^{2}}}$, thus, we get,
f’(x) = $2\alpha x-\dfrac{1}{{{x}^{2}}}$ -- (1)
We equate this to zero, we get,
$2\alpha x-\dfrac{1}{{{x}^{2}}}$=0
$\begin{align}
& 2\alpha x=\dfrac{1}{{{x}^{2}}} \\
& {{x}^{3}}=\dfrac{1}{2\alpha } \\
& x={{\left( \dfrac{1}{2\alpha } \right)}^{\dfrac{1}{3}}} \\
\end{align}$
Now, we want this point to be minimum since, we have to find the smallest $\alpha $, we have another condition,
f’’(x) > 0
Using $\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)=-\dfrac{2}{{{x}^{3}}}$, thus doing derivative of (1), we have,
f’’(x) = 2$\alpha $- ($-\dfrac{2}{{{x}^{3}}}$)
f’’(x) = 2$\alpha $+$\dfrac{2}{{{x}^{3}}}$
Now, in the question, for f’’(x) to be greater than zero, we have,
2$\alpha $+$\dfrac{2}{{{x}^{3}}}$> 0
$\alpha $> $-\dfrac{1}{{{x}^{3}}}$ - (2)
Now, we try to satisfy, f(x)$\ge $0 for $x={{\left( \dfrac{1}{2\alpha } \right)}^{\dfrac{1}{3}}}$,
thus, we have,
f${{\left( \dfrac{1}{2\alpha } \right)}^{\dfrac{1}{3}}}$$\ge $0
\[\begin{align}
& \alpha {{\left( \dfrac{1}{2\alpha } \right)}^{\dfrac{2}{3}}}-2+{{\left( \dfrac{1}{2\alpha }
\right)}^{-\dfrac{1}{3}}}\ge 0 \\
& {{\alpha }^{\dfrac{1}{3}}}{{2}^{-\dfrac{2}{3}}}-2+{{2}^{\dfrac{1}{3}}}{{\alpha }^{\dfrac{1}{3}}}\ge 0 \\
& {{\alpha }^{\dfrac{1}{3}}}\left( \dfrac{1+2}{{{2}^{\dfrac{2}{3}}}} \right)-2\ge 0 \\
\end{align}\]
\[\begin{align}
& {{\alpha }^{\dfrac{1}{3}}}\left( \dfrac{3}{{{2}^{\dfrac{2}{3}}}} \right)\ge 2 \\
& {{\alpha }^{\dfrac{1}{3}}}\ge \dfrac{{{2}^{\dfrac{5}{3}}}}{3} \\
& \alpha \ge \dfrac{{{2}^{5}}}{{{3}^{3}}} \\
\end{align}\]
Thus, the minimum value of \[\alpha =\dfrac{{{2}^{5}}}{{{3}^{3}}}\].
Hence, the correct answer (d).
Note: We found the minimum of the function, since we had to find the minimum value of $\alpha $ for f(x) to be just greater than or equal to zero. Further, it is important to keep in mind the range of x while arriving at the answer. For example, in the question, it is given that x>0, thus, if we get an extremum point which is negative, we reject that point.
Last updated date: 02nd Oct 2023
•
Total views: 362.1k
•
Views today: 10.62k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Who had given the title of Mahatma to Gandhi Ji A Bal class 10 social science CBSE

How many millions make a billion class 6 maths CBSE

Find the value of the expression given below sin 30circ class 11 maths CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Number of Prime between 1 to 100 is class 6 maths CBSE

Who was the first President of the Indian National class 10 social science CBSE
