Answer
Verified
420k+ views
Hint: We integrate $ f\left( x \right) $ with respect to $ x $ by substituting $ u=\tan \dfrac{x}{2} $ and find the anti-derivative $ F\left( x \right) $ with integration constant $ c $ .We find $ c $ using satisfaction of the given point $ \left( 0,0 \right) $ in the graph of $ F\left( x \right) $ . We put $ x=\dfrac{\pi }{2} $ and simplify to get the result. \[\]
Complete step by step answer:
We know that anti-derivative, primitive function or indefinite integral of a function $ f $ is a differentiable function $ F $ whose derivative is equal to the original function $ f $ which means $ {{F}^{'}}=f $ . The process of finding integral is called integration and the original function $ f $ is called integrand. We write integration with respect to variable $ x $ as
\[\int{f\left( x \right)}dx=F\left( x \right)+c\]
We know from double angle formula of sine and cosine in terms tangent for some angle $ A $ as;
\[\begin{align}
& \sin 2A=\dfrac{2\tan A}{1+{{\tan }^{2}}A} \\
& \cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A} \\
\end{align}\]
We are given the following original function
$ f\left( x \right)=\dfrac{1}{3+5\sin x+3\cos x} $
Let us integrate the above function by u-substitution method to find the anti-derivative $ F\left( x \right) $ .
$ F\left( x \right)=\int{f\left( x \right)dx}=\int{\dfrac{1}{3+5\sin x+3\cos x}dx} $
Let us have $ u=\tan \dfrac{x}{2} $ . We differentiate both sides with respect to $ x $ to have;
\[\begin{align}
& \dfrac{d}{dx}u=\dfrac{d}{dx}\tan \dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}}=dx \\
\end{align}\]
We use the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{du}{\dfrac{1}{2}\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)}=dx \\
& \Rightarrow dx=\dfrac{2du}{1+{{u}^{2}}} \\
\end{align}\]
We use the double angle formula of sine and cosine in terms tangent for $ A=\dfrac{x}{2} $ to have;
$ \begin{align}
& \sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2u}{1+{{u}^{2}}} \\
& \cos x=\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \\
\end{align} $
We put $ \sin x,\cos x,dx $ in terms of $ u,du $ in the integrand to have
\[\begin{align}
& F\left( x \right)=\int{\dfrac{1}{3+5\left( \dfrac{2u}{1+{{u}^{2}}} \right)+3\left( \dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \right)}\times \dfrac{2du}{1+{{u}^{2}}}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{\dfrac{3+3{{u}^{2}}+10u+3-2\mathsf{}{{u}^{2}}}{1+{{u}^{2}}}\times \left( 1+{{u}^{2}} \right)}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{6+10u}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{du}{3+5u}} \\
\end{align}\]
We take 5 multiply in the numerator and the denominator of the integrand and have;
\[\begin{align}
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\int{\dfrac{5du}{\left( 5u+3 \right)}} \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5u+3 \right)+c \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)+c \\
\end{align}\]
Here $ c $ is an arbitrary integration constant. We are given that graph of $ F\left( x \right) $ passes through $ \left( 0,0 \right) $ . So we have
\[\begin{align}
& F\left( 0 \right)=0 \\
& \Rightarrow \dfrac{1}{5}\log \left( 5\tan \dfrac{0}{2}+3 \right)+c=0 \\
& \Rightarrow c=\dfrac{-\log 3}{5} \\
\end{align}\]
So we have the anti-derivative function as
\[F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)-\dfrac{\log 3}{5}\]
We put $ x=\dfrac{\pi }{2} $ in $ F\left( x \right) $ to have;
\[\begin{align}
& F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\dfrac{\pi }{2}}{2}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\pi }{4}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\cdot 1+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\left( \log 8-\log 3 \right) \\
\end{align}\]
We use logarithmic identity of quotient $ \log \left( \dfrac{a}{b} \right)=\log a-\log b $ in the above step to have;
\[\begin{align}
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( \dfrac{8}{3} \right) \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}=0 \\
\end{align}\]
We add 1982 both sides of the above step to have;
\[\Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}+1982=1982\]
So the answer is 1982. \[\]
Note:
We should remember the integral identity $ \int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx=\log \left| f\left( x \right) \right|}+c $ . We note that integral remains same if we change the variable. The derivative of the function geometrically represents the slope of the tangent at any point; the anti-derivative represents the area under the curve. We must be careful of the confusion between sine double angle formula and tangent double angle formula which is given by $ \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} $ .
Complete step by step answer:
We know that anti-derivative, primitive function or indefinite integral of a function $ f $ is a differentiable function $ F $ whose derivative is equal to the original function $ f $ which means $ {{F}^{'}}=f $ . The process of finding integral is called integration and the original function $ f $ is called integrand. We write integration with respect to variable $ x $ as
\[\int{f\left( x \right)}dx=F\left( x \right)+c\]
We know from double angle formula of sine and cosine in terms tangent for some angle $ A $ as;
\[\begin{align}
& \sin 2A=\dfrac{2\tan A}{1+{{\tan }^{2}}A} \\
& \cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A} \\
\end{align}\]
We are given the following original function
$ f\left( x \right)=\dfrac{1}{3+5\sin x+3\cos x} $
Let us integrate the above function by u-substitution method to find the anti-derivative $ F\left( x \right) $ .
$ F\left( x \right)=\int{f\left( x \right)dx}=\int{\dfrac{1}{3+5\sin x+3\cos x}dx} $
Let us have $ u=\tan \dfrac{x}{2} $ . We differentiate both sides with respect to $ x $ to have;
\[\begin{align}
& \dfrac{d}{dx}u=\dfrac{d}{dx}\tan \dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}}=dx \\
\end{align}\]
We use the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{du}{\dfrac{1}{2}\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)}=dx \\
& \Rightarrow dx=\dfrac{2du}{1+{{u}^{2}}} \\
\end{align}\]
We use the double angle formula of sine and cosine in terms tangent for $ A=\dfrac{x}{2} $ to have;
$ \begin{align}
& \sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2u}{1+{{u}^{2}}} \\
& \cos x=\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \\
\end{align} $
We put $ \sin x,\cos x,dx $ in terms of $ u,du $ in the integrand to have
\[\begin{align}
& F\left( x \right)=\int{\dfrac{1}{3+5\left( \dfrac{2u}{1+{{u}^{2}}} \right)+3\left( \dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \right)}\times \dfrac{2du}{1+{{u}^{2}}}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{\dfrac{3+3{{u}^{2}}+10u+3-2\mathsf{}{{u}^{2}}}{1+{{u}^{2}}}\times \left( 1+{{u}^{2}} \right)}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{6+10u}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{du}{3+5u}} \\
\end{align}\]
We take 5 multiply in the numerator and the denominator of the integrand and have;
\[\begin{align}
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\int{\dfrac{5du}{\left( 5u+3 \right)}} \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5u+3 \right)+c \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)+c \\
\end{align}\]
Here $ c $ is an arbitrary integration constant. We are given that graph of $ F\left( x \right) $ passes through $ \left( 0,0 \right) $ . So we have
\[\begin{align}
& F\left( 0 \right)=0 \\
& \Rightarrow \dfrac{1}{5}\log \left( 5\tan \dfrac{0}{2}+3 \right)+c=0 \\
& \Rightarrow c=\dfrac{-\log 3}{5} \\
\end{align}\]
So we have the anti-derivative function as
\[F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)-\dfrac{\log 3}{5}\]
We put $ x=\dfrac{\pi }{2} $ in $ F\left( x \right) $ to have;
\[\begin{align}
& F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\dfrac{\pi }{2}}{2}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\pi }{4}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\cdot 1+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\left( \log 8-\log 3 \right) \\
\end{align}\]
We use logarithmic identity of quotient $ \log \left( \dfrac{a}{b} \right)=\log a-\log b $ in the above step to have;
\[\begin{align}
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( \dfrac{8}{3} \right) \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}=0 \\
\end{align}\]
We add 1982 both sides of the above step to have;
\[\Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}+1982=1982\]
So the answer is 1982. \[\]
Note:
We should remember the integral identity $ \int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx=\log \left| f\left( x \right) \right|}+c $ . We note that integral remains same if we change the variable. The derivative of the function geometrically represents the slope of the tangent at any point; the anti-derivative represents the area under the curve. We must be careful of the confusion between sine double angle formula and tangent double angle formula which is given by $ \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} $ .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE