
Let $ F\left( x \right) $ be the anti-derivative of $ f\left( x \right)=\dfrac{1}{3+5\sin x+3\cos x}dx $ whose graph passes through the point $ \left( 0,0 \right) $ . Then $ F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}+1982 $ is equal to _____. \[\]
Answer
564.9k+ views
Hint: We integrate $ f\left( x \right) $ with respect to $ x $ by substituting $ u=\tan \dfrac{x}{2} $ and find the anti-derivative $ F\left( x \right) $ with integration constant $ c $ .We find $ c $ using satisfaction of the given point $ \left( 0,0 \right) $ in the graph of $ F\left( x \right) $ . We put $ x=\dfrac{\pi }{2} $ and simplify to get the result. \[\]
Complete step by step answer:
We know that anti-derivative, primitive function or indefinite integral of a function $ f $ is a differentiable function $ F $ whose derivative is equal to the original function $ f $ which means $ {{F}^{'}}=f $ . The process of finding integral is called integration and the original function $ f $ is called integrand. We write integration with respect to variable $ x $ as
\[\int{f\left( x \right)}dx=F\left( x \right)+c\]
We know from double angle formula of sine and cosine in terms tangent for some angle $ A $ as;
\[\begin{align}
& \sin 2A=\dfrac{2\tan A}{1+{{\tan }^{2}}A} \\
& \cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A} \\
\end{align}\]
We are given the following original function
$ f\left( x \right)=\dfrac{1}{3+5\sin x+3\cos x} $
Let us integrate the above function by u-substitution method to find the anti-derivative $ F\left( x \right) $ .
$ F\left( x \right)=\int{f\left( x \right)dx}=\int{\dfrac{1}{3+5\sin x+3\cos x}dx} $
Let us have $ u=\tan \dfrac{x}{2} $ . We differentiate both sides with respect to $ x $ to have;
\[\begin{align}
& \dfrac{d}{dx}u=\dfrac{d}{dx}\tan \dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}}=dx \\
\end{align}\]
We use the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{du}{\dfrac{1}{2}\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)}=dx \\
& \Rightarrow dx=\dfrac{2du}{1+{{u}^{2}}} \\
\end{align}\]
We use the double angle formula of sine and cosine in terms tangent for $ A=\dfrac{x}{2} $ to have;
$ \begin{align}
& \sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2u}{1+{{u}^{2}}} \\
& \cos x=\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \\
\end{align} $
We put $ \sin x,\cos x,dx $ in terms of $ u,du $ in the integrand to have
\[\begin{align}
& F\left( x \right)=\int{\dfrac{1}{3+5\left( \dfrac{2u}{1+{{u}^{2}}} \right)+3\left( \dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \right)}\times \dfrac{2du}{1+{{u}^{2}}}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{\dfrac{3+3{{u}^{2}}+10u+3-2\mathsf{}{{u}^{2}}}{1+{{u}^{2}}}\times \left( 1+{{u}^{2}} \right)}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{6+10u}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{du}{3+5u}} \\
\end{align}\]
We take 5 multiply in the numerator and the denominator of the integrand and have;
\[\begin{align}
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\int{\dfrac{5du}{\left( 5u+3 \right)}} \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5u+3 \right)+c \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)+c \\
\end{align}\]
Here $ c $ is an arbitrary integration constant. We are given that graph of $ F\left( x \right) $ passes through $ \left( 0,0 \right) $ . So we have
\[\begin{align}
& F\left( 0 \right)=0 \\
& \Rightarrow \dfrac{1}{5}\log \left( 5\tan \dfrac{0}{2}+3 \right)+c=0 \\
& \Rightarrow c=\dfrac{-\log 3}{5} \\
\end{align}\]
So we have the anti-derivative function as
\[F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)-\dfrac{\log 3}{5}\]
We put $ x=\dfrac{\pi }{2} $ in $ F\left( x \right) $ to have;
\[\begin{align}
& F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\dfrac{\pi }{2}}{2}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\pi }{4}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\cdot 1+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\left( \log 8-\log 3 \right) \\
\end{align}\]
We use logarithmic identity of quotient $ \log \left( \dfrac{a}{b} \right)=\log a-\log b $ in the above step to have;
\[\begin{align}
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( \dfrac{8}{3} \right) \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}=0 \\
\end{align}\]
We add 1982 both sides of the above step to have;
\[\Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}+1982=1982\]
So the answer is 1982. \[\]
Note:
We should remember the integral identity $ \int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx=\log \left| f\left( x \right) \right|}+c $ . We note that integral remains same if we change the variable. The derivative of the function geometrically represents the slope of the tangent at any point; the anti-derivative represents the area under the curve. We must be careful of the confusion between sine double angle formula and tangent double angle formula which is given by $ \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} $ .
Complete step by step answer:
We know that anti-derivative, primitive function or indefinite integral of a function $ f $ is a differentiable function $ F $ whose derivative is equal to the original function $ f $ which means $ {{F}^{'}}=f $ . The process of finding integral is called integration and the original function $ f $ is called integrand. We write integration with respect to variable $ x $ as
\[\int{f\left( x \right)}dx=F\left( x \right)+c\]
We know from double angle formula of sine and cosine in terms tangent for some angle $ A $ as;
\[\begin{align}
& \sin 2A=\dfrac{2\tan A}{1+{{\tan }^{2}}A} \\
& \cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A} \\
\end{align}\]
We are given the following original function
$ f\left( x \right)=\dfrac{1}{3+5\sin x+3\cos x} $
Let us integrate the above function by u-substitution method to find the anti-derivative $ F\left( x \right) $ .
$ F\left( x \right)=\int{f\left( x \right)dx}=\int{\dfrac{1}{3+5\sin x+3\cos x}dx} $
Let us have $ u=\tan \dfrac{x}{2} $ . We differentiate both sides with respect to $ x $ to have;
\[\begin{align}
& \dfrac{d}{dx}u=\dfrac{d}{dx}\tan \dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2} \\
& \Rightarrow \dfrac{du}{\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}}=dx \\
\end{align}\]
We use the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{du}{\dfrac{1}{2}\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)}=dx \\
& \Rightarrow dx=\dfrac{2du}{1+{{u}^{2}}} \\
\end{align}\]
We use the double angle formula of sine and cosine in terms tangent for $ A=\dfrac{x}{2} $ to have;
$ \begin{align}
& \sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2u}{1+{{u}^{2}}} \\
& \cos x=\dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \\
\end{align} $
We put $ \sin x,\cos x,dx $ in terms of $ u,du $ in the integrand to have
\[\begin{align}
& F\left( x \right)=\int{\dfrac{1}{3+5\left( \dfrac{2u}{1+{{u}^{2}}} \right)+3\left( \dfrac{1-{{u}^{2}}}{1+{{u}^{2}}} \right)}\times \dfrac{2du}{1+{{u}^{2}}}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{\dfrac{3+3{{u}^{2}}+10u+3-2\mathsf{}{{u}^{2}}}{1+{{u}^{2}}}\times \left( 1+{{u}^{2}} \right)}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{2du}{6+10u}} \\
& \Rightarrow F\left( x \right)=\int{\dfrac{du}{3+5u}} \\
\end{align}\]
We take 5 multiply in the numerator and the denominator of the integrand and have;
\[\begin{align}
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\int{\dfrac{5du}{\left( 5u+3 \right)}} \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5u+3 \right)+c \\
& \Rightarrow F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)+c \\
\end{align}\]
Here $ c $ is an arbitrary integration constant. We are given that graph of $ F\left( x \right) $ passes through $ \left( 0,0 \right) $ . So we have
\[\begin{align}
& F\left( 0 \right)=0 \\
& \Rightarrow \dfrac{1}{5}\log \left( 5\tan \dfrac{0}{2}+3 \right)+c=0 \\
& \Rightarrow c=\dfrac{-\log 3}{5} \\
\end{align}\]
So we have the anti-derivative function as
\[F\left( x \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{x}{2}+3 \right)-\dfrac{\log 3}{5}\]
We put $ x=\dfrac{\pi }{2} $ in $ F\left( x \right) $ to have;
\[\begin{align}
& F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\dfrac{\pi }{2}}{2}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\tan \dfrac{\pi }{4}+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( 5\cdot 1+3 \right)-\dfrac{\log 3}{5} \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\left( \log 8-\log 3 \right) \\
\end{align}\]
We use logarithmic identity of quotient $ \log \left( \dfrac{a}{b} \right)=\log a-\log b $ in the above step to have;
\[\begin{align}
& \Rightarrow F\left( \dfrac{\pi }{2} \right)=\dfrac{1}{5}\log \left( \dfrac{8}{3} \right) \\
& \Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}=0 \\
\end{align}\]
We add 1982 both sides of the above step to have;
\[\Rightarrow F\left( \dfrac{\pi }{2} \right)-\dfrac{1}{5}\log \dfrac{8}{3}+1982=1982\]
So the answer is 1982. \[\]
Note:
We should remember the integral identity $ \int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx=\log \left| f\left( x \right) \right|}+c $ . We note that integral remains same if we change the variable. The derivative of the function geometrically represents the slope of the tangent at any point; the anti-derivative represents the area under the curve. We must be careful of the confusion between sine double angle formula and tangent double angle formula which is given by $ \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

