Answer

Verified

408.6k+ views

Hint: First form the universal set consisting of elements of set A, B and C. Find the complement of set B and C i.e. find \[{{B}^{C}}\]and \[{{C}^{C}}\]. Take LHS and RHS separately and prove that the simplified set is the same.

Complete step-by-step answer:

First let us form the universal set, which is a set containing all elements of all the sets A, B and C. The universal set is marked by u.

Given set, \[A=\left\{ a,b,c,d,e,f,g,x,y,z \right\}\]

\[B=\left\{ 1,2,c,d,e \right\}\]

\[C=\left\{ d,e,f,g,2,y \right\}\]

We can form the universal set,

\[u=\left\{ a,b,c,d,ef,g,x,y,z,1,2 \right\}\]

We need to find the complement of B and C. It is represented as \[{{B}^{C}}\]and \[{{C}^{C}}\].

The complement of set B is the set of all elements in the given universal set u that does not belong to set B.

\[\therefore {{B}^{C}}=\dfrac{u}{B}\]

\[{{B}^{C}}\]contains the elements that do not belong in B but do in the universal set.

\[\therefore {{B}^{C}}\left\{ a,b,f,g,x,y,z \right\}\]

Similarly, \[{{C}^{C}}=\left\{ a,b,c,x,z,1 \right\}\].

Let us first take the LHS of what we have to verify.

\[A\backslash \left( B\cup C \right)=A\cap {{\left( B\cup C \right)}^{C}}=A\cap \left( {{B}^{C}}\cap {{C}^{C}} \right)\]

{This is the general form of how it is represented}.

Now let’s open the bracket. Doing so, we get,

\[=\left( A\cap {{B}^{C}} \right)\cap \left( A\cap {{C}^{C}} \right)\]

Now we need to find \[\left( A\cap {{B}^{C}} \right)=\left\{ a,b,c,d,e,f,g,x,y,z \right\}\cap \left\{ a,b,f,g,x,y,z \right\}\].

\[\left( A\cap {{B}^{C}} \right)\]means we need to find the common elements in both set A and set \[{{B}^{C}}\].

\[\therefore A\cap {{B}^{C}}=\left\{ a,b,f,g,x,y,z \right\}\]

Similarly, \[A\cap {{C}^{C}}=\left\{ a,b,c,d,e,f,g,x,y,z \right\}\cap \left\{ a,b,c,x,z,1 \right\}\]

\[=\left\{ a,b,c,x,z \right\}\]

\[\therefore \left( A\cap {{B}^{C}} \right)\cap \left( A\cap {{C}^{C}} \right)=\left\{ a,b,f,g,x,y,z \right\}\cap \left\{ a,b,c,x,z \right\}\]

\[=\left\{ a,b,x,z \right\}\]

\[\therefore \]Value of \[A\backslash \left( B\cup C \right)=\left\{ a,b,x,z \right\}-(1)\]

Now let us consider the RHS\[=\left( A\backslash B \right)\cap \left( A\backslash C \right)\]

\[=\left( A\cap {{B}^{C}} \right)\cap \left( A\cap {{C}^{C}} \right)\]

\[\begin{align}

& \left( A\cap {{B}^{C}} \right)=\left\{ a,b,f,g,x,y,z \right\} \\

& \left( A\cap {{C}^{C}} \right)=\left\{ a,b,c,x,z \right\} \\

& \therefore \left( A\cap {{B}^{C}} \right)\cap \left( A\cap {{C}^{C}} \right)=\left\{ a,b,f,g,x,y,z \right\}\cap \left\{ a,b,c,x,z \right\}=\left\{ a,b,x,z \right\} \\

\end{align}\]

\[\therefore \]Value of \[\left( A\backslash B \right)\cap \left( A\backslash C \right)=\left\{ a,b,x,z \right\}-(2)\].

Comparing (1) and (2) we can verify that,

\[A\backslash \left( B\cup C \right)=\left( A\backslash B \right)\cap \left( A\backslash C \right)\]

which have the same set \[\left\{ a,b,x,z \right\}\].

Hence proved.

Note: You can only solve problems like this if you know the common set symbols used in set theory.

Like \[\left\{ {} \right\},A\cup B,A\cap B,{{A}^{C}}\] etc which are used in the question to verify the answer. Remember their basic symbols and what they implement.

Complete step-by-step answer:

First let us form the universal set, which is a set containing all elements of all the sets A, B and C. The universal set is marked by u.

Given set, \[A=\left\{ a,b,c,d,e,f,g,x,y,z \right\}\]

\[B=\left\{ 1,2,c,d,e \right\}\]

\[C=\left\{ d,e,f,g,2,y \right\}\]

We can form the universal set,

\[u=\left\{ a,b,c,d,ef,g,x,y,z,1,2 \right\}\]

We need to find the complement of B and C. It is represented as \[{{B}^{C}}\]and \[{{C}^{C}}\].

The complement of set B is the set of all elements in the given universal set u that does not belong to set B.

\[\therefore {{B}^{C}}=\dfrac{u}{B}\]

\[{{B}^{C}}\]contains the elements that do not belong in B but do in the universal set.

\[\therefore {{B}^{C}}\left\{ a,b,f,g,x,y,z \right\}\]

Similarly, \[{{C}^{C}}=\left\{ a,b,c,x,z,1 \right\}\].

Let us first take the LHS of what we have to verify.

\[A\backslash \left( B\cup C \right)=A\cap {{\left( B\cup C \right)}^{C}}=A\cap \left( {{B}^{C}}\cap {{C}^{C}} \right)\]

{This is the general form of how it is represented}.

Now let’s open the bracket. Doing so, we get,

\[=\left( A\cap {{B}^{C}} \right)\cap \left( A\cap {{C}^{C}} \right)\]

Now we need to find \[\left( A\cap {{B}^{C}} \right)=\left\{ a,b,c,d,e,f,g,x,y,z \right\}\cap \left\{ a,b,f,g,x,y,z \right\}\].

\[\left( A\cap {{B}^{C}} \right)\]means we need to find the common elements in both set A and set \[{{B}^{C}}\].

\[\therefore A\cap {{B}^{C}}=\left\{ a,b,f,g,x,y,z \right\}\]

Similarly, \[A\cap {{C}^{C}}=\left\{ a,b,c,d,e,f,g,x,y,z \right\}\cap \left\{ a,b,c,x,z,1 \right\}\]

\[=\left\{ a,b,c,x,z \right\}\]

\[\therefore \left( A\cap {{B}^{C}} \right)\cap \left( A\cap {{C}^{C}} \right)=\left\{ a,b,f,g,x,y,z \right\}\cap \left\{ a,b,c,x,z \right\}\]

\[=\left\{ a,b,x,z \right\}\]

\[\therefore \]Value of \[A\backslash \left( B\cup C \right)=\left\{ a,b,x,z \right\}-(1)\]

Now let us consider the RHS\[=\left( A\backslash B \right)\cap \left( A\backslash C \right)\]

\[=\left( A\cap {{B}^{C}} \right)\cap \left( A\cap {{C}^{C}} \right)\]

\[\begin{align}

& \left( A\cap {{B}^{C}} \right)=\left\{ a,b,f,g,x,y,z \right\} \\

& \left( A\cap {{C}^{C}} \right)=\left\{ a,b,c,x,z \right\} \\

& \therefore \left( A\cap {{B}^{C}} \right)\cap \left( A\cap {{C}^{C}} \right)=\left\{ a,b,f,g,x,y,z \right\}\cap \left\{ a,b,c,x,z \right\}=\left\{ a,b,x,z \right\} \\

\end{align}\]

\[\therefore \]Value of \[\left( A\backslash B \right)\cap \left( A\backslash C \right)=\left\{ a,b,x,z \right\}-(2)\].

Comparing (1) and (2) we can verify that,

\[A\backslash \left( B\cup C \right)=\left( A\backslash B \right)\cap \left( A\backslash C \right)\]

which have the same set \[\left\{ a,b,x,z \right\}\].

Hence proved.

Note: You can only solve problems like this if you know the common set symbols used in set theory.

Like \[\left\{ {} \right\},A\cup B,A\cap B,{{A}^{C}}\] etc which are used in the question to verify the answer. Remember their basic symbols and what they implement.

Recently Updated Pages

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

The branch of science which deals with nature and natural class 10 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE

a Why did Mendel choose pea plants for his experiments class 10 biology CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A milkman adds a very small amount of baking soda to class 10 chemistry CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain what is short circuiting and overloading in class 10 physics CBSE

Write an application to the principal requesting five class 10 english CBSE