# Let ABC be a fixed triangle and P be a variable point in the plane of triangle ABC. Suppose $a,b,c$ are lengths of sides $BC, CA, AB$ opposite to angles $A, B, C,$ respectively. If $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$ is minimum, then point $P$ with respect to $\Delta ABC$ is

(a) Centroid

(b) Circumcentre

(c) Orthocentre

(d) Incentre

Last updated date: 28th Mar 2023

•

Total views: 308.7k

•

Views today: 6.85k

Answer

Verified

308.7k+ views

Hint: For any function f( x,y) to be minimum , the partial derivatives of the function with respect to \[x\] and \[y\] should be equal to \[0\].

The given triangle is \[\Delta ABC\] .

Let us consider the vertices of triangle as

$A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\text{ and C}\left( {{x}_{3}},{{y}_{3}} \right)$

Also , we will consider the coordinates of $P$ to be $\left( x,y \right)$.

Now, we will find the lengths \[PA,PB\] and \[PC\].

We know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)$ is given as:

$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$

So , the length \[PA\] is given as $PA=\sqrt{{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}}$

Now , we will square both sides to determine the value of \[P{{A}^{2}}\].

On squaring both sides , we get

${{\left( PA \right)}^{2}}=\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right).............\left( i \right)$

The length \[PB\] is given as $PB=\sqrt{{{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}}}$

Now , we will square both sides to determine the value of \[P{{B}^{2}}\].

On squaring both sides , we get

${{\left( PB \right)}^{2}}=\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right).............\left( ii \right)$

The length \[PC\] is given as $PC=\sqrt{{{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}}}$

Now , we will square both sides to determine the value of \[P{{C}^{2}}\].

On squaring both sides , we get

${{\left( PC \right)}^{2}}=\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right).............\left( iii \right)$

Now , we will find the value of $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$

Substituting $\left( i \right)$, $\left( ii \right)$ and $\left( iii \right)$ we get;

$a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}=a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right)$ Now , we will find the condition for $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$ to be minimum .

We know for any function $f\left( x,y \right)$ to be minimum,

$\dfrac{\partial }{\partial x}f\left( x,y \right)=0$ and $\dfrac{\partial }{\partial y}f\left( x,y \right)=0$.

So , for $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$ to be minimum,

$\dfrac{\partial }{\partial x}\left( a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}} \right)=0$ and

$\dfrac{\partial }{\partial y}\left( a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}} \right)=0$

$\Rightarrow \dfrac{\partial }{\partial x}\left( a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right) \right)=0$

$\Rightarrow 2x\left( a+b+c \right)-2\left( a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}} \right)=0$

$\Rightarrow x=\dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c}..............\left( iv \right)$

Again ,

$\Rightarrow \dfrac{\partial }{\partial y}\left( a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right) \right)=0$

$\Rightarrow 2y\left( a+b+c \right)-2\left( a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}} \right)=0$

$\Rightarrow y=\left( \dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)..............\left( v \right)$

So , the coordinates of $P\left( x,y \right)$ are given as;

$\left( \dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c},\dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)$ (From $\left( iv \right)$ and$\left( v \right)$)

So , we can clearly see that $P$ is the incentre of $\Delta ABC$.

Option (D) - Incentre is correct answer

Note: While partially differentiating the function with respect to \[x\], remember to treat \[y\] as a constant . Similarly , while partially differentiating the function with respect to \[y\], remember to treat \[x\] as a constant . Students generally make a mistake of treating the function as an implicit function and then they apply chain rule of differentiation , which is wrong .

The given triangle is \[\Delta ABC\] .

Let us consider the vertices of triangle as

$A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\text{ and C}\left( {{x}_{3}},{{y}_{3}} \right)$

Also , we will consider the coordinates of $P$ to be $\left( x,y \right)$.

Now, we will find the lengths \[PA,PB\] and \[PC\].

We know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)$ is given as:

$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$

So , the length \[PA\] is given as $PA=\sqrt{{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}}$

Now , we will square both sides to determine the value of \[P{{A}^{2}}\].

On squaring both sides , we get

${{\left( PA \right)}^{2}}=\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right).............\left( i \right)$

The length \[PB\] is given as $PB=\sqrt{{{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}}}$

Now , we will square both sides to determine the value of \[P{{B}^{2}}\].

On squaring both sides , we get

${{\left( PB \right)}^{2}}=\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right).............\left( ii \right)$

The length \[PC\] is given as $PC=\sqrt{{{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}}}$

Now , we will square both sides to determine the value of \[P{{C}^{2}}\].

On squaring both sides , we get

${{\left( PC \right)}^{2}}=\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right).............\left( iii \right)$

Now , we will find the value of $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$

Substituting $\left( i \right)$, $\left( ii \right)$ and $\left( iii \right)$ we get;

$a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}=a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right)$ Now , we will find the condition for $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$ to be minimum .

We know for any function $f\left( x,y \right)$ to be minimum,

$\dfrac{\partial }{\partial x}f\left( x,y \right)=0$ and $\dfrac{\partial }{\partial y}f\left( x,y \right)=0$.

So , for $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$ to be minimum,

$\dfrac{\partial }{\partial x}\left( a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}} \right)=0$ and

$\dfrac{\partial }{\partial y}\left( a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}} \right)=0$

$\Rightarrow \dfrac{\partial }{\partial x}\left( a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right) \right)=0$

$\Rightarrow 2x\left( a+b+c \right)-2\left( a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}} \right)=0$

$\Rightarrow x=\dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c}..............\left( iv \right)$

Again ,

$\Rightarrow \dfrac{\partial }{\partial y}\left( a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right) \right)=0$

$\Rightarrow 2y\left( a+b+c \right)-2\left( a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}} \right)=0$

$\Rightarrow y=\left( \dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)..............\left( v \right)$

So , the coordinates of $P\left( x,y \right)$ are given as;

$\left( \dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c},\dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)$ (From $\left( iv \right)$ and$\left( v \right)$)

So , we can clearly see that $P$ is the incentre of $\Delta ABC$.

Option (D) - Incentre is correct answer

Note: While partially differentiating the function with respect to \[x\], remember to treat \[y\] as a constant . Similarly , while partially differentiating the function with respect to \[y\], remember to treat \[x\] as a constant . Students generally make a mistake of treating the function as an implicit function and then they apply chain rule of differentiation , which is wrong .

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE