
Let \[A = \left\{ {0,1,2,3} \right\}\] and define a relation R as follows \[R = \left\{ {\left( {0,0} \right),\left( {0,1} \right),\left( {0,3} \right),\left( {1,0} \right),\left( {1,1} \right),\left( {2,2} \right),\left( {3,0} \right),\left( {3,3} \right)} \right\}\]. Is R reflexive, symmetric and transitive?
Answer
483k+ views
Hint: In this question, we are given a set A and we are given a relation in this set. We have to find whether the relation is reflexive, symmetric and transitive. So, all the conditions for a set to be reflexive, symmetric and transitive are considered. If the relation fails to satisfy those conditions, then it wouldn’t qualify as reflexive, symmetric or transitive.
Complete step-by-step solution:
We have \[A = \left\{ {0,1,2,3} \right\}\] and \[R = \left\{ {\left( {0,0} \right),\left( {0,1} \right),\left( {0,3} \right),\left( {1,0} \right),\left( {1,1} \right),\left( {2,2} \right),\left( {3,0} \right),\left( {3,3} \right)} \right\}\]
The necessary condition for a relation to be reflexive is $(a,a) \in R$
For set A, all the elements of the form (a,a) are present in R. For example, $(0,0) \in R$
So, the given relation is reflexive.
For a set to be symmetric, the necessary condition is that if $(a,b) \in R$ then $(b,a) \in R$
The set R contains both $(0,1)$ and $(1,0)$ . It also contains $(3,0)$ and $(0,3)$ so the given relation is a reflexive relation.
The necessary condition for a set to be transitive is that if the set contains $(a,b)$ and $(b,c)$ then it must contain $(a,c)$ .
The set R contains $(1,0)\,and\,(0,3)$ but it doesn’t contain $(1,3)$ . So, the given relation is not transitive.
Hence, the given relation is symmetric and reflexive but not transitive.
Note: The set must pass all the conditions that are necessary for it to become reflexive, symmetric or transitive. Some sets can pass one of the conditions but may not pass the others. The relations that are reflexive, symmetric and transitive are known as equivalent relations. The given relation is not an equivalence relation.
Complete step-by-step solution:
We have \[A = \left\{ {0,1,2,3} \right\}\] and \[R = \left\{ {\left( {0,0} \right),\left( {0,1} \right),\left( {0,3} \right),\left( {1,0} \right),\left( {1,1} \right),\left( {2,2} \right),\left( {3,0} \right),\left( {3,3} \right)} \right\}\]
The necessary condition for a relation to be reflexive is $(a,a) \in R$
For set A, all the elements of the form (a,a) are present in R. For example, $(0,0) \in R$
So, the given relation is reflexive.
For a set to be symmetric, the necessary condition is that if $(a,b) \in R$ then $(b,a) \in R$
The set R contains both $(0,1)$ and $(1,0)$ . It also contains $(3,0)$ and $(0,3)$ so the given relation is a reflexive relation.
The necessary condition for a set to be transitive is that if the set contains $(a,b)$ and $(b,c)$ then it must contain $(a,c)$ .
The set R contains $(1,0)\,and\,(0,3)$ but it doesn’t contain $(1,3)$ . So, the given relation is not transitive.
Hence, the given relation is symmetric and reflexive but not transitive.
Note: The set must pass all the conditions that are necessary for it to become reflexive, symmetric or transitive. Some sets can pass one of the conditions but may not pass the others. The relations that are reflexive, symmetric and transitive are known as equivalent relations. The given relation is not an equivalence relation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
The aviation fuel used in the engines of jet airplanes class 10 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Why is it 530 pm in india when it is 1200 afternoon class 10 social science CBSE

What is the full form of POSCO class 10 social science CBSE

Draw a labelled diagram of the human digestive system class 10 biology CBSE

What is potential and actual resources
