# Let $a,{\text{ }}b$ and $c$ be the real numbers such that $4a + 2b + c = 0 $ and $ ab > 0$. Then the equation $a{x^2} + bx + c = 0$ has:

$(a)$complex roots

$(b)$exactly one root

$(c)$real roots

$(d)$none of these

Last updated date: 16th Mar 2023

•

Total views: 306k

•

Views today: 8.86k

Answer

Verified

306k+ views

Hint: In the above given question, we are asked to calculate the nature of the roots of the quadratic equation $a{x^2} + bx + c = 0$. And we must be aware of the fact that in the polynomial equations, the number of roots is equal to its degree.

We have the given quadratic equation as

$a{x^2} + bx + c = 0$.

Let us assume the value $x = 2$ in the above equation, we get

$4a + 2b + c = 0$

which means that one real root of the given quadratic equation can be equal to 2.

As we already know that the number of roots of a polynomial equation is equal to its degree, therefore, we can conclude that the given quadratic equation $a{x^2} + bx + c = 0$ also has two roots.

Now, since one real root of the quadratic equation is 2, therefore, the other root must also be real.

Hence, the roots of the given quadratic equation are real and distinct.

So, the required solution is the option $(c)$ real roots.

Note: Whenever we face such types of problems the key point is to have a good grasp of the nature of the roots like real and distinct, real and equal, imaginary roots, etc. After determining the nature of roots of the given polynomial equation, the value of the roots can be easily calculated.

We have the given quadratic equation as

$a{x^2} + bx + c = 0$.

Let us assume the value $x = 2$ in the above equation, we get

$4a + 2b + c = 0$

which means that one real root of the given quadratic equation can be equal to 2.

As we already know that the number of roots of a polynomial equation is equal to its degree, therefore, we can conclude that the given quadratic equation $a{x^2} + bx + c = 0$ also has two roots.

Now, since one real root of the quadratic equation is 2, therefore, the other root must also be real.

Hence, the roots of the given quadratic equation are real and distinct.

So, the required solution is the option $(c)$ real roots.

Note: Whenever we face such types of problems the key point is to have a good grasp of the nature of the roots like real and distinct, real and equal, imaginary roots, etc. After determining the nature of roots of the given polynomial equation, the value of the roots can be easily calculated.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE