Answer
Verified
476.4k+ views
Hint: In the above given question, we are asked to calculate the nature of the roots of the quadratic equation $a{x^2} + bx + c = 0$. And we must be aware of the fact that in the polynomial equations, the number of roots is equal to its degree.
We have the given quadratic equation as
$a{x^2} + bx + c = 0$.
Let us assume the value $x = 2$ in the above equation, we get
$4a + 2b + c = 0$
which means that one real root of the given quadratic equation can be equal to 2.
As we already know that the number of roots of a polynomial equation is equal to its degree, therefore, we can conclude that the given quadratic equation $a{x^2} + bx + c = 0$ also has two roots.
Now, since one real root of the quadratic equation is 2, therefore, the other root must also be real.
Hence, the roots of the given quadratic equation are real and distinct.
So, the required solution is the option $(c)$ real roots.
Note: Whenever we face such types of problems the key point is to have a good grasp of the nature of the roots like real and distinct, real and equal, imaginary roots, etc. After determining the nature of roots of the given polynomial equation, the value of the roots can be easily calculated.
We have the given quadratic equation as
$a{x^2} + bx + c = 0$.
Let us assume the value $x = 2$ in the above equation, we get
$4a + 2b + c = 0$
which means that one real root of the given quadratic equation can be equal to 2.
As we already know that the number of roots of a polynomial equation is equal to its degree, therefore, we can conclude that the given quadratic equation $a{x^2} + bx + c = 0$ also has two roots.
Now, since one real root of the quadratic equation is 2, therefore, the other root must also be real.
Hence, the roots of the given quadratic equation are real and distinct.
So, the required solution is the option $(c)$ real roots.
Note: Whenever we face such types of problems the key point is to have a good grasp of the nature of the roots like real and distinct, real and equal, imaginary roots, etc. After determining the nature of roots of the given polynomial equation, the value of the roots can be easily calculated.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE