
Let $A$ and $B$ be two sets such that$n\left( A \right) = 20,n\left( {A \cup B} \right) = 42$ and $n\left( {A \cap B} \right) = 4$:
Find $n\left( {B - A} \right)$.
Answer
595.5k+ views
Hint: In this question we have been given with two sets A and B and the values of some set operations are given, using these values we are supposed to find the number of elements that are in B but not in A, we can simply use the formula of intersection to obtain the elements in set B and then subtracting that with the intersection will give us the answer.
Note: While solving these questions, it is very important to apply the correct formula to obtain the answer. In this question, we used the formula of intersection first to obtain the elements in B and then subtracted with the intersection to get the answer.
Complete step by step answer:
It is already given that,
$n\left( A \right) = 20$,
$n\left( {A \cup B} \right) = 42$
And,
$n\left( {A \cap B} \right) = 4$
Using the formula,
$n\left( B \right) = n\left( {A \cup B} \right) + n\left( {A \cap B} \right) - n\left( A \right)$
Therefore, on putting the values in the formula, we get,
$n\left( B \right) = 42 + 4 - 20$
$n\left( B \right) = 26$
$n\left( {B - A} \right) = n\left( B \right) - n\left( {A \cap B} \right)$
$n\left( {B - A} \right) = 26 - 4$
$n\left( {B - A} \right) = 22$
It is already given that,
$n\left( A \right) = 20$,
$n\left( {A \cup B} \right) = 42$
And,
$n\left( {A \cap B} \right) = 4$
Using the formula,
$n\left( B \right) = n\left( {A \cup B} \right) + n\left( {A \cap B} \right) - n\left( A \right)$
Therefore, on putting the values in the formula, we get,
$n\left( B \right) = 42 + 4 - 20$
$n\left( B \right) = 26$
$n\left( {B - A} \right) = n\left( B \right) - n\left( {A \cap B} \right)$
$n\left( {B - A} \right) = 26 - 4$
$n\left( {B - A} \right) = 22$
Note: While solving these questions, it is very important to apply the correct formula to obtain the answer. In this question, we used the formula of intersection first to obtain the elements in B and then subtracted with the intersection to get the answer.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

