Answer
Verified
466.8k+ views
Hint: In this question, the equation of circle is given. To find the y-intercept made by a circle we will first convert the given circle equation into the standard circle equation and then use the formula for y-intercept to the value of y-intercept.
Complete step-by-step answer:
In the question, it is given that:
Equation of circle is $5{{\text{x}}^2} + 5{{\text{y}}^2} - 2{\text{x + 6y - 8 = 0}}$ .
We have to find the y-intercept made by the given circle.
We know that the standard equation of circle is given by:
${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$. (1)
Y-intercept of this circle is given by $2\sqrt {{{\text{f}}^2} - c} $ .
But the equation of the circle given is not in the standard form. So we will first convert this equation in standard form.
$
\Rightarrow 5{{\text{x}}^2} + 5{{\text{y}}^2} - 2{\text{x + 6y - 8 = 0}} \\
$
On dividing the above equation by 5, we get,
$
\Rightarrow {{\text{x}}^2} + {{\text{y}}^2} - \dfrac{2}{5}{\text{x + }}\dfrac{6}{5}{\text{y - }}\dfrac{8}{5}{\text{ = 0}} \\
$
So the above equation is the standard equation of a circle.
On comparing the above equation with equation 1, we get:
$
2{\text{g = - }}\dfrac{2}{5} \\
\Rightarrow {\text{g = - }}\dfrac{1}{5}. \\
{\text{And}} \\
{\text{2f = }}\dfrac{6}{5}. \\
\Rightarrow {\text{f = }}\dfrac{3}{5},{\text{ and c = - }}\dfrac{8}{5}. \\
$
Y-intercept made by circle =$2\sqrt {{{\text{f}}^2} - c} $.
Putting the value of ‘f’ and ‘c’ in the above formula, we get:
Y-intercept made by circle = $2\sqrt {{{\text{f}}^2} - c} = 2\sqrt {{{\left( {\dfrac{3}{5}} \right)}^2} - \left( { - \dfrac{8}{5}} \right)} = 2\sqrt {\dfrac{9}{{25}} + \dfrac{8}{5}} = 2\sqrt {\dfrac{{49}}{{25}}} = 2 \times \dfrac{7}{5} = \dfrac{{14}}{5}.$
Note: In this type of question, the first important thing is to clearly see the question whether it is asking y-intercept or x-intercept. Then convert the given equation into a standard form of equation. You should remember the formula for finding y-intercept. Compare the transformed given equation with the standard equation to get the value of parameters required for computing the y-intercept.
Complete step-by-step answer:
In the question, it is given that:
Equation of circle is $5{{\text{x}}^2} + 5{{\text{y}}^2} - 2{\text{x + 6y - 8 = 0}}$ .
We have to find the y-intercept made by the given circle.
We know that the standard equation of circle is given by:
${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$. (1)
Y-intercept of this circle is given by $2\sqrt {{{\text{f}}^2} - c} $ .
But the equation of the circle given is not in the standard form. So we will first convert this equation in standard form.
$
\Rightarrow 5{{\text{x}}^2} + 5{{\text{y}}^2} - 2{\text{x + 6y - 8 = 0}} \\
$
On dividing the above equation by 5, we get,
$
\Rightarrow {{\text{x}}^2} + {{\text{y}}^2} - \dfrac{2}{5}{\text{x + }}\dfrac{6}{5}{\text{y - }}\dfrac{8}{5}{\text{ = 0}} \\
$
So the above equation is the standard equation of a circle.
On comparing the above equation with equation 1, we get:
$
2{\text{g = - }}\dfrac{2}{5} \\
\Rightarrow {\text{g = - }}\dfrac{1}{5}. \\
{\text{And}} \\
{\text{2f = }}\dfrac{6}{5}. \\
\Rightarrow {\text{f = }}\dfrac{3}{5},{\text{ and c = - }}\dfrac{8}{5}. \\
$
Y-intercept made by circle =$2\sqrt {{{\text{f}}^2} - c} $.
Putting the value of ‘f’ and ‘c’ in the above formula, we get:
Y-intercept made by circle = $2\sqrt {{{\text{f}}^2} - c} = 2\sqrt {{{\left( {\dfrac{3}{5}} \right)}^2} - \left( { - \dfrac{8}{5}} \right)} = 2\sqrt {\dfrac{9}{{25}} + \dfrac{8}{5}} = 2\sqrt {\dfrac{{49}}{{25}}} = 2 \times \dfrac{7}{5} = \dfrac{{14}}{5}.$
Note: In this type of question, the first important thing is to clearly see the question whether it is asking y-intercept or x-intercept. Then convert the given equation into a standard form of equation. You should remember the formula for finding y-intercept. Compare the transformed given equation with the standard equation to get the value of parameters required for computing the y-intercept.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell