
Length of y - intercept made by the circle $5{{\text{x}}^2} + 5{{\text{y}}^2} - 2{\text{x + 6y - 8 = 0 is:}}$
$
{\text{A}}{\text{.}}\dfrac{{19}}{5}. \\
{\text{B}}{\text{.}}\dfrac{{14}}{5}. \\
{\text{C}}{\text{.}}\dfrac{{11}}{5}. \\
{\text{D}}{\text{.}}\dfrac{9}{5}. \\
$
Answer
607.8k+ views
Hint: In this question, the equation of circle is given. To find the y-intercept made by a circle we will first convert the given circle equation into the standard circle equation and then use the formula for y-intercept to the value of y-intercept.
Complete step-by-step answer:
In the question, it is given that:
Equation of circle is $5{{\text{x}}^2} + 5{{\text{y}}^2} - 2{\text{x + 6y - 8 = 0}}$ .
We have to find the y-intercept made by the given circle.
We know that the standard equation of circle is given by:
${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$. (1)
Y-intercept of this circle is given by $2\sqrt {{{\text{f}}^2} - c} $ .
But the equation of the circle given is not in the standard form. So we will first convert this equation in standard form.
$
\Rightarrow 5{{\text{x}}^2} + 5{{\text{y}}^2} - 2{\text{x + 6y - 8 = 0}} \\
$
On dividing the above equation by 5, we get,
$
\Rightarrow {{\text{x}}^2} + {{\text{y}}^2} - \dfrac{2}{5}{\text{x + }}\dfrac{6}{5}{\text{y - }}\dfrac{8}{5}{\text{ = 0}} \\
$
So the above equation is the standard equation of a circle.
On comparing the above equation with equation 1, we get:
$
2{\text{g = - }}\dfrac{2}{5} \\
\Rightarrow {\text{g = - }}\dfrac{1}{5}. \\
{\text{And}} \\
{\text{2f = }}\dfrac{6}{5}. \\
\Rightarrow {\text{f = }}\dfrac{3}{5},{\text{ and c = - }}\dfrac{8}{5}. \\
$
Y-intercept made by circle =$2\sqrt {{{\text{f}}^2} - c} $.
Putting the value of ‘f’ and ‘c’ in the above formula, we get:
Y-intercept made by circle = $2\sqrt {{{\text{f}}^2} - c} = 2\sqrt {{{\left( {\dfrac{3}{5}} \right)}^2} - \left( { - \dfrac{8}{5}} \right)} = 2\sqrt {\dfrac{9}{{25}} + \dfrac{8}{5}} = 2\sqrt {\dfrac{{49}}{{25}}} = 2 \times \dfrac{7}{5} = \dfrac{{14}}{5}.$
Note: In this type of question, the first important thing is to clearly see the question whether it is asking y-intercept or x-intercept. Then convert the given equation into a standard form of equation. You should remember the formula for finding y-intercept. Compare the transformed given equation with the standard equation to get the value of parameters required for computing the y-intercept.
Complete step-by-step answer:
In the question, it is given that:
Equation of circle is $5{{\text{x}}^2} + 5{{\text{y}}^2} - 2{\text{x + 6y - 8 = 0}}$ .
We have to find the y-intercept made by the given circle.
We know that the standard equation of circle is given by:
${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$. (1)
Y-intercept of this circle is given by $2\sqrt {{{\text{f}}^2} - c} $ .
But the equation of the circle given is not in the standard form. So we will first convert this equation in standard form.
$
\Rightarrow 5{{\text{x}}^2} + 5{{\text{y}}^2} - 2{\text{x + 6y - 8 = 0}} \\
$
On dividing the above equation by 5, we get,
$
\Rightarrow {{\text{x}}^2} + {{\text{y}}^2} - \dfrac{2}{5}{\text{x + }}\dfrac{6}{5}{\text{y - }}\dfrac{8}{5}{\text{ = 0}} \\
$
So the above equation is the standard equation of a circle.
On comparing the above equation with equation 1, we get:
$
2{\text{g = - }}\dfrac{2}{5} \\
\Rightarrow {\text{g = - }}\dfrac{1}{5}. \\
{\text{And}} \\
{\text{2f = }}\dfrac{6}{5}. \\
\Rightarrow {\text{f = }}\dfrac{3}{5},{\text{ and c = - }}\dfrac{8}{5}. \\
$
Y-intercept made by circle =$2\sqrt {{{\text{f}}^2} - c} $.
Putting the value of ‘f’ and ‘c’ in the above formula, we get:
Y-intercept made by circle = $2\sqrt {{{\text{f}}^2} - c} = 2\sqrt {{{\left( {\dfrac{3}{5}} \right)}^2} - \left( { - \dfrac{8}{5}} \right)} = 2\sqrt {\dfrac{9}{{25}} + \dfrac{8}{5}} = 2\sqrt {\dfrac{{49}}{{25}}} = 2 \times \dfrac{7}{5} = \dfrac{{14}}{5}.$
Note: In this type of question, the first important thing is to clearly see the question whether it is asking y-intercept or x-intercept. Then convert the given equation into a standard form of equation. You should remember the formula for finding y-intercept. Compare the transformed given equation with the standard equation to get the value of parameters required for computing the y-intercept.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

