
What is the LCM of $\left( {6{x^3} + 60{x^2} + 150x} \right)$ and $\left( {3{x^4} + 12{x^3} - 15{x^2}} \right)$?
A.$6{x^2}{(x + 5)^2}(x - 1)$
B.$3{x^2}{(x + 5)^2}(x - 1)$
C.$6{x^2}{(x + 5)^2}{(x - 1)^2}$
D.$3{x^2}{(x + 5)^2}{(x - 1)^2}$
Answer
592.5k+ views
Hint: At first we need to factorize the given polynomials into their simpler forms, and from that we can write the lcm . To find the LCM , at first we need to write all the elements but in the case of common terms we consider the term with the highest degree
Complete step-by-step answer:
Step-1
The first polynomial given is $\left( {6{x^3} + 60{x^2} + 150x} \right)$.
Now we need to factorize this polynomial into product of linear polynomials to find the LCM
Let's first start with the numerical value 6, taking 6 as a common element we get,
$ \Rightarrow 6\left( {{x^3} + 10{x^2} + 25x} \right)$
The next common element is x .So taking x common we get,
$ \Rightarrow 6x\left( {{x^2} + 10{x^{}} + 25} \right)$
Now we need to factorize the quadratic polynomial $\left( {{x^2} + 10{x^{}} + 25} \right)$
Now by splitting the middle term,we get
$ \Rightarrow 6x\left( {{x^2} + 5x + 5x + 25} \right)$
Now taking x common from the first two terms and 5 common in the next two terms we get,
$ \Rightarrow 6x\left( {x(x + 5) + 5(x + 5)} \right) \\
\Rightarrow 6x(x + 5)(x + 5) \\
\Rightarrow 6x{(x + 5)^2} \\
$
Step 2 :
Now the second polynomial is $\left( {3{x^4} + 12{x^3} - 15{x^2}} \right)$
Now we need to factorize this polynomial into product of linear polynomials to find the LCM
Let's first start with the numerical value 3, taking 3 as a common element we get,
$ \Rightarrow 3\left( {{x^4} + 4{x^3} - 5{x^2}} \right)$
The next common element is ${x^2}$ .So taking ${x^2}$common we get,
$ \Rightarrow 3{x^2}\left( {{x^2} + 4x - 5} \right)$
Now we need to factorize the quadratic polynomial $\left( {{x^2} + 4x - 5} \right)$
Now by splitting the middle term,we get
$ \Rightarrow 3{x^2}\left( {{x^2} + 5x - x - 5} \right)$
Now taking x common from the first two terms and - 1 common in the next two terms we get, $3{x^2}(x + 5)(x - 1)$
Step 3 :
Now to find the LCM , at first we need to write all the elements but in the case of common terms we consider the term with the highest degree.
The given polynomials are $6x{(x + 5)^2}$ and $3{x^2}(x + 5)(x - 1)$
At first we need to find the LCM of 3 and 6
The LCM of 3 and 6 is 6
And now we have $x$ and .${x^2}$. So the lcm is the one with the highest degree , (i . e ) ${x^2}$
Then we have $x + 5$ and ${(x + 5)^2}$ and consider the one with the highest degree we select .${(x + 5)^2}$.
And including $x - 1$
The LCM is $6{x^2}{(x + 5)^2}(x - 1)$
The correct option is A.
Note: Many students forget to find the lcm of the numerical values and write only the algebraic terms which is wrong
Additional information
For any two polynomials p(x) and q(x)
LCM * GCD = p(x) * q(x)
Complete step-by-step answer:
Step-1
The first polynomial given is $\left( {6{x^3} + 60{x^2} + 150x} \right)$.
Now we need to factorize this polynomial into product of linear polynomials to find the LCM
Let's first start with the numerical value 6, taking 6 as a common element we get,
$ \Rightarrow 6\left( {{x^3} + 10{x^2} + 25x} \right)$
The next common element is x .So taking x common we get,
$ \Rightarrow 6x\left( {{x^2} + 10{x^{}} + 25} \right)$
Now we need to factorize the quadratic polynomial $\left( {{x^2} + 10{x^{}} + 25} \right)$
Now by splitting the middle term,we get
$ \Rightarrow 6x\left( {{x^2} + 5x + 5x + 25} \right)$
Now taking x common from the first two terms and 5 common in the next two terms we get,
$ \Rightarrow 6x\left( {x(x + 5) + 5(x + 5)} \right) \\
\Rightarrow 6x(x + 5)(x + 5) \\
\Rightarrow 6x{(x + 5)^2} \\
$
Step 2 :
Now the second polynomial is $\left( {3{x^4} + 12{x^3} - 15{x^2}} \right)$
Now we need to factorize this polynomial into product of linear polynomials to find the LCM
Let's first start with the numerical value 3, taking 3 as a common element we get,
$ \Rightarrow 3\left( {{x^4} + 4{x^3} - 5{x^2}} \right)$
The next common element is ${x^2}$ .So taking ${x^2}$common we get,
$ \Rightarrow 3{x^2}\left( {{x^2} + 4x - 5} \right)$
Now we need to factorize the quadratic polynomial $\left( {{x^2} + 4x - 5} \right)$
Now by splitting the middle term,we get
$ \Rightarrow 3{x^2}\left( {{x^2} + 5x - x - 5} \right)$
Now taking x common from the first two terms and - 1 common in the next two terms we get, $3{x^2}(x + 5)(x - 1)$
Step 3 :
Now to find the LCM , at first we need to write all the elements but in the case of common terms we consider the term with the highest degree.
The given polynomials are $6x{(x + 5)^2}$ and $3{x^2}(x + 5)(x - 1)$
At first we need to find the LCM of 3 and 6
The LCM of 3 and 6 is 6
And now we have $x$ and .${x^2}$. So the lcm is the one with the highest degree , (i . e ) ${x^2}$
Then we have $x + 5$ and ${(x + 5)^2}$ and consider the one with the highest degree we select .${(x + 5)^2}$.
And including $x - 1$
The LCM is $6{x^2}{(x + 5)^2}(x - 1)$
The correct option is A.
Note: Many students forget to find the lcm of the numerical values and write only the algebraic terms which is wrong
Additional information
For any two polynomials p(x) and q(x)
LCM * GCD = p(x) * q(x)
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

